Material strength modeling for CTH applications, 2005
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Solid solutions of lead-based perovskites are the backbone materials of the piezoelectric components for transducer, actuator, and resonator applications. These components, typically small in size, are fabricated from large sintered ceramic slugs using grinding and lapping processes. These operations increase manufacturing costs and produce a large hazardous waste stream, especially when component size decreases. To reduce costs and hazardous wastes associated with the production of these components, an injection molding technique is being investigated to replace the machining processes. The first step in the new technique is to compound an organic carrier with a ceramic powder. The organic carrier is a thermoplastic based system composed of a main carrier, a binder, and a surfactant. Understanding the rheology of the compounded material is necessary to minimize the creation of defects such as voids or cavities during the injection-molding process. An experiment was performed to model the effects of changes in the composition and processing of the material on the rheological behavior. Factors studied included: the surfactant of the organic carrier system, the solid loading of the compounded material, and compounding time. The effects of these factors on the viscosity of the material were investigated.
Abstract not provided.
Proposed for publication in Optics Letters.
We report the experimental realization of a new type of optical parametric oscillator in which oscillation is achieved by polarization rotation in a linear retarder, followed by nonlinear polarization mixing. The mixing is performed by a type II degenerate parametric downconversion in a periodically poled KTP crystal pumped by a 1064 nm pulsed Nd:YAG pump. A single, linearly polarized beam, precisely at the degenerate wavelength is generated. The output spectrum has a narrow linewidth (below the instrumentation bandwidth of 1 nm) and is highly stable with respect to variations in the crystal temperature.
Abstract not provided.
Abstract not provided.
Concepts from Complexity Science are valuable and allow a simulation approach for critical infrastructures that is flexible and has wide ranging applications.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in the Lab On A Chip.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Annals of Operations Research, Special Issue on Decision Theory and Computer Science.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in IEEE Transactions in Industrial Electronics.
Abstract not provided.
A large-scale field demonstration comparing final landfill cover designs was constructed and monitored at Sandia National Laboratories in Albuquerque, New Mexico. Two conventional designs (a RCRA Subtitle 'D' Soil Cover and a RCRA Subtitle 'C' Compacted Clay Cover) were constructed side-by-side with four alternative cover test plots designed for arid environments. The demonstration was intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. A portion of this project involves the characterization of vegetation establishment and growth on the landfill covers. The various prototype landfill covers were expected to have varying flux rates (Dwyer et al 2000). The landfill covers were further expected to influence vegetation establishment and growth, which may impact site erosion potential and long-term site integrity. Objectives of this phase were to quantify the types of plants occupying each site, the percentage of ground covered by these plants, the density (number of plants per unit area) of plants, and the plant biomass production. The results of this vegetation analysis are presented in this report.3 DRAFT07/06/14AcknowledgementsWe would like to thank all technical and support staff from Sandia and the USDA Forest Service's Rocky Mountain Station not included in the authors' list of this document for their valuable contributions to this research. We would also like to acknowledge the Department of Energy's Subsurface Contaminants Focus Area for funding this work.4
Abstract not provided.
Abstract not provided.
This Work Plan identifies and outlines interim measures to address nitrate contamination in groundwater at the Burn Site, Sandia National Laboratories/New Mexico. The New Mexico Environment Department has required implementation of interim measures for nitrate-contaminated groundwater at the Burn Site. The purpose of interim measures is to prevent human or environmental exposure to nitrate-contaminated groundwater originating from the Burn Site. This Work Plan details a summary of current information about the Burn Site, interim measures activities for stabilization, and project management responsibilities to accomplish this purpose.
Abstract not provided.
Abstract not provided.
Proposed for publication in Physical Review Letters.
We show that the orientation of pentacene molecules is controlled by the electronic structure of the surface on which they are deposited. We suggest that the near-Fermi level density of states above the surface controls the interaction of the substrate with the pentacene {pi} orbitals. A reduction of this density as compared to noble metals, realized in semimetallic Bi(001) and Si(111)(5 x 2)Au surfaces, results in pentacene standing up. Interestingly, pentacene grown on Bi(001) is highly ordered, yielding the first vertically oriented epitaxial pentacene thin films observed to date.
Abstract not provided.
Proposed for publication in AIAA Journal.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Meteoritics
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report documents activities related to the ASCI AD Resistance Weld Process Modeling Project AD2003-15. Activities up to and including FY2004 are discussed. This was the third year for this multi year project, the objective of which is to position the SIERRA computational tools for the solution of resistance welding problems. The process of interest is a three-way coupled problem involving current flow, temperature buildup and large plastic deformation. The DSW application is the reclamation stem weld used in the manufacture of high pressure gas bottles. This is the first year the CALAGIO suite of codes (eCALORE, CALORE, and ADAGIO) was used to successfully solve a three-way coupled problem in SIERRA. This report discusses the application of CALAGIO to the tapered bar acceptance problem and a similar but independent tapered bar simulation of a companion C6 experiment. New additions to the EMMI constitutive model and issues related to CALAGIO performance are also discussed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Macromolecules.
Classical density functional theory (DFT) is applied to study properties of fully detailed, realistic models of poly(dimethylsiloxane) liquids near silica surfaces and compared to results from molecular dynamics simulations. In solving the DFT equations, the direct correlation functions are obtained from the polymer reference interaction site model (PRISM) theory for the repulsive parts of the interatomic interactions, and the attractions are treated via the random-phase approximation (RPA). Good agreement between density profiles calculated from DFT and from the simulations is obtained with empirical scaling of the direct correlation functions. Separate scaling factors are required for the PRISM and RPA parts of the direct correlation functions. Theoretical predictions of stress profiles, normal pressure, and surface tensions are also in reasonable agreement with simulation results.
Abstract not provided.
Abstract not provided.
Proposed for publication in Acta Crystallographica Section E.
In the crystal structure of the title compound, C{sub 4}H{sub 4}N{sub 2}O{sub 3}, the packing is dominated by intermolecular carbonyl-carbonyl interactions and N-H...O hydrogen bonds.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Computer Methods in Applied Mechanics and Engineering.
The solution of the governing steady transport equations for momentum, heat and mass transfer in fluids undergoing non-equilibrium chemical reactions can be extremely challenging. The difficulties arise from both the complexity of the nonlinear solution behavior as well as the nonlinear, coupled, non-symmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this paper, we briefly review progress on developing a stabilized finite element (FE) capability for numerical solution of these challenging problems. The discussion considers the stabilized FE formulation for the low Mach number Navier-Stokes equations with heat and mass transport with non-equilibrium chemical reactions, and the solution methods necessary for detailed analysis of these complex systems. The solution algorithms include robust nonlinear and linear solution schemes, parameter continuation methods, and linear stability analysis techniques. Our discussion considers computational efficiency, scalability, and some implementation issues of the solution methods. Computational results are presented for a CFD benchmark problem as well as for a number of large-scale, 2D and 3D, engineering transport/reaction applications.
Journal of Physical Chemistry B
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Advanced Materials.
Abstract not provided.
Proposed for publication in Advanced Materials.
Abstract not provided.
Abstract not provided.
Proposed for publication in Applied Physics Letters.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Thin Solid Films.
Highly ordered gold nanocrystal (NC)/silica films are synthesized by self-assembly of water-soluble gold NC micelles and silica using a sol-gel spin coating technique. The optical properties are analyzed using ellipsometry and ultraviolet-visible spectroscopy. Transmission and absorption spectra were measured for wavelengths ranging from 200 to 2000 nm. The absorption spectra show a strong surface plasmon absorption band at {approx}520 nm for all samples. Charge transport behavior of the films was examined using metal-oxide-semiconductor (MOS) and metal-insulator-metal (MIM) structures. MOS capacitor samples exhibit charge storage with discharge behavior dominated by electron transport within the gold NC arrays. Low temperature current-voltage measurements on MIM devices reveal electrical conduction with a thermal activation energy of {approx}90 meV. For temperatures less than 100 K, the I-V characteristics of the NC film exhibits a strong coulomb blockade effect, with a threshold voltage of {approx}0.5 V measured at 78 K.
Proposed for publication in Communications in Numerical Methods in Engineering.
A new approach is proposed for the a posteriori error estimation of both global spatial and parameter error in parameterized nonlinear reaction-diffusion problems. The technique is based on linear equations relating the linearized spatial and parameter error to the weak residual. Computable local element error indicators are derived for local contributions to the global spatial and parameter error, along with corresponding global error indicators. The effectiveness of the error indicators is demonstrated using model problems for the case of regular points and simple turning points. In addition, a new turning point predictor and adaptive algorithm for accurately computing turning points are introduced.
Abstract not provided.
Proposed for publication in the Journal of Applied Physics.
The intense magnetic field produced by the 20 MA Z accelerator is used as an impulsive pressure source to accelerate metal flyer plates to high velocity for the purpose of performing plate impact, shock wave experiments. This capability has been significantly enhanced by the recently developed pulse shaping capability of Z, which enables tailoring the rise time to peak current for a specific material and drive pressure to avoid shock formation within the flyer plate during acceleration. Consequently, full advantage can be taken of the available current to achieve the maximum possible magnetic drive pressure. In this way, peak magnetic drive pressures up to 490 GPa have been produced, which shocklessly accelerated 850 {micro}m aluminum (6061-T6) flyer plates to peak velocities of 34 km/s. We discuss magnetohydrodynamic (MHD) simulations that are used to optimize the magnetic pressure for a given flyer load and to determine the shape of the current rise time that precludes shock formation within the flyer during acceleration to peak velocity. In addition, we present results pertaining to plate impact, shock wave experiments in which the aluminum flyer plates were magnetically accelerated across a vacuum gap and impacted z-cut, {alpha}-quartz targets. Accurate measurements of resulting quartz shock velocities are presented and analyzed through high-fidelity MHD simulations enhanced using optimization techniques. Results show that a fraction of the flyer remains at solid density at impact, that the fraction of material at solid density decreases with increasing magnetic pressure, and that the observed abrupt decrease in the quartz shock velocity is well correlated with the melt transition in the aluminum flyer.