Publications

Results 79001–79100 of 99,299

Search results

Jump to search filters

Sandia National Laboratories California Waste Management Program Annual Report February 2008

Brynildson, Mark E.

The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

More Details

Parallel job scheduling policies to improve fairness : a case study

Leung, Vitus J.

Balancing fairness, user performance, and system performance is a critical concern when developing and installing parallel schedulers. Sandia uses a customized scheduler to manage many of their parallel machines. A primary function of the scheduler is to ensure that the machines have good utilization and that users are treated in a 'fair' manner. A separate compute process allocator (CPA) ensures that the jobs on the machines are not too fragmented in order to maximize throughput. Until recently, there has been no established technique to measure the fairness of parallel job schedulers. This paper introduces a 'hybrid' fairness metric that is similar to recently proposed metrics. The metric uses the Sandia version of a 'fairshare' queuing priority as the basis for fairness. The hybrid fairness metric is used to evaluate a Sandia workload. Using these results, multiple scheduling strategies are introduced to improve performance while satisfying user and system performance constraints.

More Details

Final LDRD report : infrared detection and power generation using self-assembled quantum dots

Cederberg, Jeffrey G.; Shaner, Eric A.; Ellis, A.R.

Alternative solutions are desired for mid-wavelength and long-wavelength infrared radiation detection and imaging arrays. We have investigated quantum dot infrared photodetectors (QDIPs) as a possible solution for long-wavelength infrared (8 to 12 {mu}m) radiation sensing. This document provides a summary for work done under the LDRD 'Infrared Detection and Power Generation Using Self-Assembled Quantum Dots'. Under this LDRD, we have developed QDIP sensors and made efforts to improve these devices. While the sensors fabricated show good responsivity at 80 K, their detectivity is limited by high noise current. Following efforts concentrated on how to reduce or eliminate this problem, but with no clear path was identified to the desired performance improvements.

More Details

Ultraviolet photodissociation of vinyl iodide: Understanding the halogen dependence of photodissociation mechanisms in vinyl halides

Physical Chemistry Chemical Physics

Strecker, Kevin S.; Jusinski, Leonard E.; Taatjes, Craig A.; Osborn, David L.

The photodissociation of vinyl iodide has been investigated at several wavelengths between 193 and 266 nm using three techniques: time-resolved Fourier transform emission spectroscopy, multiple pass laser absorption spectroscopy, and velocity-mapped ion imaging. The only dissociation channel observed is C-I bond cleavage to produce C2H3 (v, N) + I ( 2PJ) at all wavelengths investigated. Unlike photodissociation of other vinyl halides (C2H3X, X = F, Cl, Br), in which the HX product channel is significant, no HI elimination is observed. The angular and translational energy distributions of I atoms indicate that atomic products arise solely from dissociation on excited states with negligible contribution from internal conversion to the ground state. We derive an upper limit on the C-I bond strength of D0(C2H 3-I) ≤ 65 kcal mol-1. The ground-state potential-energy surface of vinyl iodide is explored by ab initio calculations. We present a model in which the highest occupied molecular orbital in vinyl halides has increasing X(np⊥) non-bonding character with increasing halogen mass. This change leads to reduced torsional force around the C-C bond in the excited state. Because the ground-state energy is highest when the CH 2 plane is perpendicular to the CHX plane, a reduced torsional force in the excited state correlates with a lower rate for internal conversion compared to excited-state C-X bond fission. This model explains the gradual change in photodissociation mechanisms of vinyl halides from the dominance of internal conversion in vinyl fluoride to the dominance of excited-state dissociation in vinyl iodide. © the Owner Societies.

More Details

Studies of the thermodynamic properties of hydrogen gas in bulk water

Journal of Physical Chemistry B

Sabo, Dubravko S.; Varma, Sameer; Martin, Marcus G.; Rempe, Susan B.

The thermodynamic properties of hydrogen gas in liquid water are investigated using Monte Carlo molecular simulation and the quasichemical theory of liquids. The free energy of hydrogen hydration obtained by Monte Carlo simulations agrees well with the experimental result, indicating that the classical force fields used in this work provide an adequate description of intermolecular interactions in the aqueous hydrogen system. Two estimates of the hydration free energy for hydrogen made within the framework of the quasichemical theory also agree reasonably well with experiment provided local anharmonic motions and distant interactions with explicit solvent are treated. Both quasichemical estimates indicate that the hydration free energy results from a balance between chemical association and molecular packing. Additionally, the results suggest that the molecular packing term is almost equally driven by unfavorable enthalpic and entropie components. © 2008 American Chemical Society.

More Details

Supersonic radiatively cooled rotating flows and jets in the laboratory

Physical Review Letters

Ampleford, David J.; Lebedev, S.V.; Ciardi, A.; Bland, S.N.; Bott, S.C.; Hall, G.N.; Naz, N.; Jennings, C.A.; Sherlock, M.; Chittenden, J.P.; Palmer, J.B.A.; Frank, A.; Blackman, E.

The first laboratory astrophysics experiments to produce a radiatively cooled plasma jet with dynamically significant angular momentum are discussed. A new configuration of wire array z pinch, the twisted conical wire array, is used to produce convergent plasma flows each rotating about the central axis. Collision of the flows produces a standing shock and jet that each have supersonic azimuthal velocities. By varying the twist angle of the array, the rotation velocity of the system can be controlled, with jet rotation velocities reaching ∼18% of the propagation velocity. © 2008 The American Physical Society.

More Details

Genome scale enzyme - Metabolite and drug - Target interaction predictions using the signature molecular descriptor

Bioinformatics

Faulon, Jean-Loup M.; Misra, Milind; Martin, Shawn; Sale, Kenneth L.; Sapra, Rajat

Motivation: Identifying protein enzymatic or pharmacological activities are important areas of research in biology and chemistry. Biological and chemical databases are increasingly being populated with linkages between protein sequences and chemical structures. There is now sufficient information to apply machine - learning techniques to predict interactions between chemicals and proteins at a genome scale. Current machine-learning techniques use as input either protein sequences and structures or chemical information. We propose here a method to infer protein - chemical interactions using heterogeneous input consisting of both protein sequence and chemical information. Results: Our method relies on expressing proteins and chemicals with a common cheminformatics representation. We demonstrate our approach by predicting whether proteins can catalyze reactions not present in training sets. We also predict whether a given drug can bind a target, in the absence of prior binding information for that drug and target. Such predictions cannot be made with current machine - learning techniques requiring binding information for individual reactions or individual targets. © 2007 The Author(s).

More Details

A combined ab initio and photoionization mass spectrometric study of polyynes in fuel-rich flames

Physical Chemistry Chemical Physics

Hansen, Nils; Klippenstein, S.J.; Westmoreland, P.R.; Kasper, Tina K.; Kohse-Höinghaus, K.; Wang, J.; Cool, T.A.

Polyynic structures in fuel-rich low-pressure flames are observed using VUV photoionization molecular-beam mass spectrometry. High-level ab initio calculations of ionization energies for C2nH2 (n = 1-5) and partially hydrogenated CnH4 (n = 7-8) polyynes are compared with photoionization efficiency measurements in flames fuelled by allene, propyne, and cyclopentene. C2nH2 (n = 1-5) intermediates are unambiguously identified, while HC≡C-C≡C-CH=C= CH2, HC≡C-C≡C-C≡C-CH=CH2 (vinyltriacetylene) and HC≡C-C≡C-CH=CH-C≡CH are likely to contribute to the C7H4 and C8H4 signals. Mole fraction profiles as a function of distance from the burner are presented. C7H4 and C8H4 isomers are likely to be formed by reactions of C2H and C4H radicals but other plausible formation pathways are also discussed. Heats of formation and ionization energies of several combustion intermediates have been determined for the first time. © the Owner Societies.

More Details

Investigation of compressible electromagnetic flute mode instability in finite beta plasma in support of Z-pinch and laboratory astrophysics experiments

Communications in Computational Physics

Sotnikov, V.I.; Ivanov, V.V.; Presura, R.; Leboeuf, J.N.; Onishchenko, O.G.; Oliver, Bryan V.; Jones, Brent M.; Mehlhorn, Thomas A.; Deeney, Chris

Flute mode turbulence plays an important role in numerous applications, such as tokamak, Z-pinch, space and astrophysical plasmas. In a low beta plasma flute oscillations are electrostatic and in the nonlinear stage they produce large scale density structures co-mingling with short scale oscillations. Large scale structures are responsible for the enhanced transport across the magnetic field and appearance of short scales leads to ion heating, associated with the ion viscosity. In the present paper nonlinear equations which describe the nonlinear evolution of the flute modes treated as compressible electromagnetic oscillations in a finite beta inhomogeneous plasma with nonuniform magnetic field are derived and solved numerically. For this purpose the 2D numerical code FLUTE was developed. Numerical results show that even in a finite beta plasma flute mode instability can develop along with formation of large scale structures co-existing with short scale perturbations in the nonlinear stage. © 2008 Global-Science Press.

More Details

Nonlinear deflection model for corner-supported, thin laminates shape-controlled with moment actuators

ASME International Mechanical Engineering Congress and Exposition, Proceedings

Chaplya, Pavel M.; Martin, Jeffrey W.; Reu, P.L.; Sumali, Hartono (Anton)

The shape control of thin, flexible structures has been studied primarily for edge-supported thin-plates. For applications such as electromagnetic wave reflectors, corner-supported configurations may prove more applicable since they allow for greater flexibility and larger achievable deflections when compared to edge-supported geometries under similar actuation conditions. Models of such structures provide insight for effective, realizable designs, enable design optimization, and provide a means of active shape control. Models for small deformations of corner-supported, thin laminates actuated by integrated piezoelectric actuators have been developed. However, membrane deflections expected for nominal actuation exceed those stipulated by linear, small deflection theories. In addition, large deflection models have been developed for membranes; however these models are not formulated for shape control. This paper extends a previously-developed linear model for a corner-supported thin, rectangular laminate to a more general large deflection model for a clamped-corner laminate composed of moment actuators and an array of actuating electrodes. First, a nonlinear model determining the deflected shape of a laminate given a distribution of actuation voltages is derived. Second, a technique is employed to formulate the model as a map between input voltage and deflection alone, making it suitable for shape control. Finally, comparisons of simulated deflections with measured deflections of a fabricated active laminate are investigated.

More Details

Evaluation of PIV uncertainties using multiple configurations and processing techniques

46th AIAA Aerospace Sciences Meeting and Exhibit

Beresh, Steven J.

Particle image velocimetry (PIV) data have been acquired using three different experimental configurations in the far-field of the interaction created by a transverse supersonic jet exhausting from a flat plate into a transonic crossflow. The configurations included two-component PIV in the centerline streamwise plane at two overlapping downstream stations, as well as stereoscopic PIV in both the same streamwise plane and in the crossplane. All measurement planes intersected at a common line. Data from both two-component measurement stations and the stereoscopic streamwise configuration agreed to within the estimated uncertainty, but data from the crossplane exhibited reduced velocity and turbulent stress magnitudes by a small but significant degree. Subsequent reprocessing of the data in nominally the same manner using a newer software package brought all values into close agreement with each other, but produced turbulent stresses substantially higher than those from the first software package. The error source associated with the choice of software was traced to the use of image deformation in the newer software to treat velocity gradients, which synthetic PIV tests show yields a more accurate result for turbulence measurements even for gradients within the recommended limits for classical PIV. These detailed comparisons of redundant data suggest that routine methods of uncertainty quantification may not fully capture the error sources of an experiment.

More Details

Galerkin reduced order models for compressible flow with structural interaction

46th AIAA Aerospace Sciences Meeting and Exhibit

Barone, Matthew F.; Segalman, Daniel J.; Thornquist, Heidi K.; Kalashnikova, Irina

The Galerkin projection procedure for construction of reduced order models of compressible flow is examined as an alternative discretization of the governing differential equations. The numerical stability of Galerkin models is shown to depend on the choice of inner product for the projection. For the linearized Euler equations, a symmetry transform leads to a stable formulation for the inner product. Boundary conditions for compressible flow that preserve stability of the reduced order model are constructed. Coupling with a linearized structural dynamics model is made possible through the solid wall boundary condition. Preservation of stability for the discrete implementation of the Galerkin projection is made possible using piecewise-smooth finite element bases. Stability of the coupled fluid/structure system is examined for the case of uniform flow past a thin plate. Stability of the reduced order model for the fluid is demonstrated on several model problems, where a suitable approximation basis is generated using proper orthogonal decomposition of a transient computational fluid dynamics simulation.

More Details

ALEGRA: An arbitrary Lagrangian-Eulerian multimaterial, multiphysics code

46th AIAA Aerospace Sciences Meeting and Exhibit

Robinson, Allen C.; Brunner, Thomas A.; Carroll, Susan; Richarddrake; Garasi, Christopher J.; Gardiner, Thomas; Haill, Thomas; Hanshaw, Heath; Hensinger, David; Labreche, Duane; Lemke, Raymond; Love, Edward; Luchini, Christopher; Mosso, Stewart; Niederhaus, John; Ober, Curtis C.; Petney, Sharon; Rider, William J.; Scovazzi, Guglielmo; Strack, O.E.; Summers, Randall; Trucano, Timothy; Weirs, V.G.; Wong, Michael; Voth, Thomas

ALEGRA is an arbitrary Lagrangian-Eulerian (multiphysics) computer code developed at Sandia National Laboratories since 1990. The code contains a variety of physics options including magnetics, radiation, and multimaterial flow. The code has been developed for nearly two decades, but recent work has dramatically improved the code's accuracy and robustness. These improvements include techniques applied to the basic Lagrangian differencing, artificial viscosity and the remap step of the method including an important improvement in the basic conservation of energy in the scheme. We will discuss the various algorithmic improvements and their impact on the results for important applications. Included in these applications are magnetic implosions, ceramic fracture modeling, and electromagnetic launch. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc.

More Details

Solute Mixing Models for Water-Distribution Pipe Networks

Journal of Hydraulic Engineering

Ho, Clifford K.

The spreading of solutes or contaminants through water-distribution pipe networks is controlled largely by mixing at pipe junctions where varying flow rates and concentrations can enter the junction. Alternative models of solute mixing within these pipe junctions are presented in this paper. Simple complete-mixing models are discussed along with rigorous computational-fluid-dynamics models based on turbulent Navier-Stokes equations. In addition, a new model that describes the bulk-mixing behavior resulting from different flow rates entering and leaving the junction is developed in this paper. Comparisons with experimental data have confirmed that this bulk-mixing model provides a lower bound to the amount of mixing that can occur within a pipe junction, while the complete-mixing model yields an upper bound. In addition, a simple scaling parameter is used to estimate the actual (intermediate) mixing behavior based on the bounding predictions of the complete-mixing and bulk-mixing models. These simple analytical models can be readily implemented into network-scale models to develop predictions and bounding scenarios of solute transport and water quality in water-distribution systems.

More Details

Design and performance of a high-repetition-rate single-frequency Yb:YAG microlaser

Schmitt, Randal L.

We describe the design and performance of a high-repetition-rate single-frequency passively Q-switched Yb:YAG microlaser operating near 1030 nm. By using short cavity length, an intracavity Brewster polarizer, and an etalon output coupler, we are able to produce {approx}1-ns-long single-frequency pulses at repetition rates up to 19 kHz without shot-to-shot mode hopping. The laser's output spatial mode is TEM{sub 00} and its pulse energy varies between 31 {micro}J and 47 {micro}J depending on repetition rate. Its peak optical-to-optical efficiency is 22%.

More Details

Weighting hyperspectral image data for improved multivariate curve resolution results

Journal of Chemometrics

Jones, Howland D.T.; Haaland, David M.; Sinclair, Michael B.; Melgaard, David K.; Van Benthem, Mark H.; Pedroso, M.C.

The combination of hyperspectral confocal fluorescence microscopy and multivariate curve resolution (MCR) provides an ideal system for improved quantitative imaging when multiple fluorophores are present. However, the presence of multiple noise sources limits the ability of MCR to accurately extract pure-component spectra when there is high spectral and/or spatial overlap between multiple fluorophores. Previously, MCR results were improved by weighting the spectral images for Poisson-distributed noise, but additional noise sources are often present. We have identified and quantified all the major noise sources in hyperspectral fluorescence images. Two primary noise sources were found: Poisson-distributed noise and detector-read noise. We present methods to quantify detector-read noise variance and to empirically determine the electron multiplying CCD (EMCCD) gain factor required to compute the Poisson noise variance. We have found that properly weighting spectral image data to account for both noise sources improved MCR accuracy. In this paper, we demonstrate three weighting schemes applied to a real hyperspectral corn leaf image and to simulated data based upon this same image. MCR applied to both real and simulated hyperspectral images weighted to compensate for the two major noise sources greatly improved the extracted pure emission spectra and their concentrations relative to MCR with either unweighted or Poisson-only weighted data. Thus, properly identifying and accounting for the major noise sources in hyperspectral images can serve to improve the MCR results. These methods are very general and can be applied to the multivariate analysis of spectral images whenever CCD or EMCCD detectors are used. Copyright © 2008 John Wiley & Sons, Ltd.

More Details
Results 79001–79100 of 99,299
Results 79001–79100 of 99,299