The Future of Linear Algebra in the C++ Standard
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ITS is a powerful software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the make system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 95. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
TBSmerged integrates data from instruments flown on ARM’s Tethered Balloon System missions that collect in situ measurements of temperature, humidity, wind speed, wind direction, and aerosol properties with estimates of cloud base and boundary layer height from a surface-based ceilometer to improve the ease of use of TBS datasets. TBSmergedincloud includes supercooled liquid water content (tbsslwc) measurements collected within the cloud.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
In this report we detail demonstration of temperature dependent effects on grayscale intensity imaged in Focused Ion Beam (FIB) microscope, as well as secondary electron (SE) dependence on temperature in the Auger Electron Spectroscopy (AES) and a Scanning Electron Microscope (SEM). In each instrument an intrinsic silicon sample is imaged at multiple temperatures over the course of each experiment. The grayscale intensity is shown to scale with sample temperature. Sample preparation procedures are discussed, along with hypothesized explanations for unsuccessful trials. Anticipated outcomes and future directions for these measurements are also detailed.
The knowledge of long-term health and reliability of energy storage systems is still unknown, yet these systems are proliferating and are expected increasingly to assist in the maintenance of grid reliability. Understanding long-term reliability and performance characteristics to the degree of knowledge similar to that of traditional utility assets requires operational data. This guideline is intended to inform numerous stakeholders on what data are needed for given functions, how to prescribe access to those data and the considerations impacting data architecture design, as well as provide these stakeholders insight into the data and data systems necessary to ensure storage can meet growing expectations in a safe and cost-efficient manner. Understanding data needs, the systems required, relevant standards, and user needs early in a project conception aids greatly in ensuring that a project ultimately performs to expectations.