In this report we detail demonstration of temperature dependent effects on grayscale intensity imaged in Focused Ion Beam (FIB) microscope, as well as secondary electron (SE) dependence on temperature in the Auger Electron Spectroscopy (AES) and a Scanning Electron Microscope (SEM). In each instrument an intrinsic silicon sample is imaged at multiple temperatures over the course of each experiment. The grayscale intensity is shown to scale with sample temperature. Sample preparation procedures are discussed, along with hypothesized explanations for unsuccessful trials. Anticipated outcomes and future directions for these measurements are also detailed.
The Spent Fuel Waste Disposition (SFWD) program under the U.S. Department of Energy (DOE) is planning a seismic shake table test of full-scale dry storage systems of spent nuclear fuel (SNF) to close the gap related to the seismic loads on the fuel assemblies in dry storage systems. This test will allow for quantifying the strains and accelerations on surrogate fuel assembly during representative earthquakes. A concrete layer will be installed on the shake table before the test to simulate conditions representative of an ISFSI pad. In the shake table tests with the vertical cask, the cask will be free-standing because this is representative of all, except two, ISFSIs in the U.S. with vertical dry storage casks. The static and dynamic friction coefficients between the steel bottom of the cask and the concrete layer on the shake table are important parameters that will affect cask behavior during the test. These parameters must be known for the pre- and post-test modelling, data analysis, and model validation. The friction experiment was performed at the Engineering Department of the University of New Mexico (UNM) to determine the friction coefficients between a steel plate with the same finish as the bottom of the vertical cask manufactured for the test and different concrete surfaces. In this experiment the steel plate was fixed and the concrete sample was pulled over the plate with a constant displacement rate using an MTS machine. This allowed for collecting continuous horizontal force data over the length of the steel plate. Four displacement rates and three vertical loads were used. The tests were performed with four concrete blocks with different degrees of the surface roughness - light sandblast, light to medium sandblast, medium bush hammer, and heavy sandblast. The total number of tests was 48. The data were used to calculate static and dynamic friction coefficients.
This Section covers an introduction to the objectives and techniques used in this analysis. The objectives of the report are given in Subsection 1.1. An introduction to aqueous thermodynamics and how variance might propagate through the relevant thermodynamic equations is given in Subsection 1.2. An introduction to Bayesian inference and its application to thermodynamic modeling is given in Subsection 1.3.
Mcglone, Joe F.; Ghadi, Hemant; Cornuelle, Evan; Armstrong, Andrew A.; Burns, George R.; Feng, Zixuan; Uddin Bhuiyan, A.F.M.A.; Zhao, Hongping; Arehart, Aaron R.; Ringel, Steven A.
The impact of 1.8 MeV proton irradiation on metalorganic chemical vapor deposition grown (010) β-Ga2O3 Schottky diodes is presented. It is found that after a 10.8 × 10 13 cm - 2 proton fluence the Schottky barrier height of (1.40 ± 0.05 eV) and the ideality factor of (1.05 ± 0.05) are unaffected. Capacitance-voltage extracted net ionized doping curves indicate a carrier removal rate of 268 ± 10 cm - 1. The defect states responsible for the observed carrier removal are studied through a combination of deep level transient and optical spectroscopies (DLTS/DLOS) as well as lighted capacitance-voltage (LCV) measurements. The dominating effect on the defect spectrum is due to the EC-2.0 eV defect state observed in DLOS and LCV. This state accounts for ∼ 75% of the total trap introduction rate and is the primary source of carrier removal from proton irradiation. Of the DLTS detected states, the EC-0.72 eV state dominated but had a comparably smaller contribution to the trap introduction. These two traps have previously been correlated with acceptor-like gallium vacancy-related defects. Several other trap states at EC-0.36, EC-0.63, and EC-1.09 eV were newly detected after proton irradiation, and two pre-existing states at EC-1.2 and EC-4.4 eV showed a slight increase in concentration after irradiation, together accounting for the remainder of trap introduction. However, a pre-existing trap at EC-0.40 eV was found to be insensitive to proton irradiation and, therefore, is likely of extrinsic origin. The comprehensive defect characterization of 1.8 MeV proton irradiation damage can aid the modeling and design for a range of radiation tolerant devices.
Here we report on AlGaN high electron mobility transistor (HEMT)-based logic development, using combined enhancement- and depletion-mode transistors to fabricate inverters with operation from room temperature up to 500°C. Our development approach included: (a) characterizing temperature-dependent carrier transport for different AlGaN HEMT heterostructures, (b) developing a suitable gate metal scheme for use in high temperatures, and (c) over-temperature testing of discrete devices and inverters. Hall mobility data (from 30°C to 500°C) revealed the reference GaN-channel HEMT experienced a 6.9x reduction in mobility, whereas the AlGaN channel HEMTs experienced about a 3.1x reduction. Furthermore, a greater aluminum contrast between the barrier and channel enabled higher carrier densities in the two-dimensional electron gas for all temperatures. The combination of reduced variation in mobility with temperature and high sheet carrier concentration showed that an Al-rich AlGaN-channel HEMT with a high barrier-to-channel aluminum contrast is the best option for an extreme temperature HEMT design. Three gate metal stacks were selected for low resistivity, high melting point, low thermal expansion coefficient, and high expected barrier height. The impact of thermal cycling was examined through electrical characterization of samples measured before and after rapid thermal anneal. The 200-nm tungsten gate metallization was the top performer with minimal reduction in drain current, a slightly positive threshold voltage shift, and about an order of magnitude advantage over the other gates in on-to-off current ratio. After incorporating the tungsten gate metal stack in device fabrication, characterization of transistors and inverters from room temperature up to 500°C was performed. The enhancement-mode (e-mode) devices’ resistance started increasing at about 200°C, resulting in drain current degradation. This phenomenon was not observed in depletion-mode (d-mode) devices but highlights a challenge for inverters in an e-mode driver and d-mode load configuration.
Mohottalalage, Supun S.; Kosgallana, Chathurika; Meedin, Shalika; Connor, Gary S.'.; Grest, Gary S.; Perahia, Dvora
Ionizable polymers form dynamic networks with domains controlled by two distinct energy scales, ionic interactions and van der Waals forces; both evolve under elongational flows during their processing into viable materials. A molecular level insight of their nonlinear response, paramount to controlling their structure, is attained by fully atomistic molecular dynamics simulations of a model ionizable polymer, polystyrene sulfonate. As a function of increasing elongational flow rate, the systems display an initial elastic response, followed by an ionic fraction-dependent strain hardening, stress overshoot, and eventually strain-thinning. As the sulfonation fraction increases, the chain elongation becomes more heterogeneous. Finally, flow-driven ionic assembly dynamics that continuously break and reform control the response of the system.
Automation of rate-coefficient calculations for gas-phase organic species became possible in recent years and has transformed how we explore these complicated systems computationally. Kinetics workflow tools bring rigor and speed and eliminate a large fraction of manual labor and related error sources. In this paper we give an overview of this quickly evolving field and illustrate, through five detailed examples, the capabilities of our own automated tool, KinBot. We bring examples from combustion and atmospheric chemistry of C-, H-, O-, and N-atom-containing species that are relevant to molecular weight growth and autoxidation processes. The examples shed light on the capabilities of automation and also highlight particular challenges associated with the various chemical systems that need to be addressed in future work.
For computational physics simulations, code verification plays a major role in establishing the credibility of the results by assessing the correctness of the implementation of the underlying numerical methods. In computational electromagnetics, surface integral equations, such as the method-of-moments implementation of the magnetic-field integral equation, are frequently used to solve Maxwell's equations on the surfaces of electromagnetic scatterers. These electromagnetic surface integral equations yield many code-verification challenges due to the various sources of numerical error and their possible interactions. In this paper, we provide approaches to separately measure the numerical errors arising from these different error sources. We demonstrate the effectiveness of these approaches for cases with and without coding errors.
Bifurcations are commonly encountered during force controlled swept and stepped sine testing of nonlinear structures, which generally leads to the so-called jump-down or jump-up phenomena between stable solutions. There are various experimental closed-loop control algorithms, such as control-based continuation and phase-locked loop, to stabilize dynamical systems through these bifurcations, but they generally rely on specialized control algorithms that are not readily available with many commercial data acquisition software packages. A recent method was developed to experimentally apply sequential continuation using the shaker voltage that can be readily deployed using commercially available software. By utilizing the stabilizing effects of electrodynamic shakers and the force dropout phenomena in fixed frequency voltage control sine tests, this approach has been demonstrated to stabilize the unstable branch of a nonlinear system with three branches, allowing for three multivalued solutions to be identified within a specific frequency bandwidth near resonance. Recent testing on a strongly nonlinear system with vibro-impact nonlinearity has revealed jumping behavior when performing sequential continuation along the voltage parameter, like the jump phenomena seen during more traditional force controlled swept and stepped sine testing. Here, this paper investigates the stabilizing effects of an electrodynamic shaker on strongly nonlinear structures in fixed frequency voltage control tests using both numerical and experimental methods. The harmonic balance method is applied to the coupled shaker-structure system with an electromechanical model to simulate the fixed voltage control tests and predict the stabilization for different parameters of the model. The simulated results are leveraged to inform the design of a set of experiments to demonstrate the stabilization characteristics on a fixture-pylon assembly with a vibro-impact nonlinearity. Through numerical simulation and experimental testing on two different strongly nonlinear systems, the various parameters that influence the stability of the coupled shaker-structure are revealed to better understand the performance of fixed frequency voltage control tests.
Calcite (CaCO3) composition and properties are defined by the chemical environment in which CaCO3 forms. However, a complete understanding of the relationship between aqueous chemistry during calcite precipitation and resulting chemical and physical CaCO3 properties remains elusive; therefore, we present an investigation into the coupled effects of divalent cations Sr2+ and Mg2+ on CaCO3 precipitation and subsequent crystal growth. Through chemical analysis of the aqueous phases and microscopy of the resulting calcite phases in compliment with density functional theory calculations, we elucidate the relationship between crystal growth and the resulting composition (elemental and isotopic) of calcite. The results of this experimental and modeling work suggest that Mg2+ and Sr2+ have cation-specific impacts that inhibit calcite crystal growth, including: (1) Sr2+ incorporates more readily into calcite than Mg2+ (DSr > DMg), and increasing [Sr2+]t or [Mg2+]t increases DSr; (2) the inclusion of Mg2+ into structure leads to a reduction in the calcite unit cell volume, whereas Sr2+ leads to an expansion; (3) the inclusion of both Mg2+ and Sr2+ results in a distribution of unit cell impacts based on the relative positions of the Sr2+ and Mg2+ in the lattice. These experiments were conducted at saturation indices of CaCO3 of ~4.1, favoring rapid precipitation. This rapid precipitation resulted in observed Sr isotope fractionation confirming Sr isotopic fractionation is dependent upon the precipitation rate. We further note that the precipitation and growth of calcite favors the incorporation of the lighter 86Sr isotope over the heavier 87Sr isotope, regardless of the initial solution conditions, and the degree of fractionation increases with DSr. In sum, these results demonstrate the impact of solution environment to influence the incorporation behavior and crystal growth behavior of calcite. These factors are important to understand in order to effectively use geochemical signatures resulting from calcite precipitation or dissolution to gain specific information.
The Synchronic Web is a distributed network for securing data provenance on the World Wide Web. By enabling clients around the world to freely commit digital information into a single shared view of history, it provides a foundational basis of truth on which to build decentralized and scalable trust across the Internet. Its core cryptographical capability allows mutually distrusting parties to create and verify statements of the following form: “I commit to this information—and only this information—at this moment in time.” The backbone of the Synchronic Web infrastructure is a simple, small, and semantic-free blockchain that is accessible to any Internet-enabled entity. The infrastructure is maintained by a permissioned network of well-known servers, called notaries, and accessed by a permissionless group of clients, called journals. Through an evolving stack of flexible and composable semantic specifications, the parties cooperate to generate synchronic commitments over arbitrary data. When integrated with existing infrastructures, adapted to diverse domains, and scaled across the breadth of cyberspace, the Synchronic Web provides a ubiquitous mechanism to lock the world’s data into unique points in discrete time and digital space. This document provides a technical description of the core Synchronic Web system. The distinguishing innovation in our design—and the enabling mechanism behind the model—is the novel use of verifiable maps to place authenticated content into canonically defined locations off-chain. While concrete specifications and software implementations of the Synchronic Web continue to evolve, the information covered in the body of this document should remain stable. We aim to present this information clearly and concisely for technical non-experts to understand the essential functionality and value proposition of the network. In the interest of promoting discourse, we take some liberty in projecting the potential implications of the new model.
Vibrational spectroscopy is a nondestructive technique commonly used in chemical and physical analyses to determine atomic structures and associated properties. However, the evaluation and interpretation of spectroscopic profiles based on human-identifiable peaks can be difficult and convoluted. To address this challenge, we present a reliable protocol based on supervised manifold learning techniques meant to connect vibrational spectra to a variety of complex and diverse atomic structure configurations. As an illustration, we examined a large database of virtual vibrational spectroscopy profiles generated from atomistic simulations for silicon structures subjected to different stress, amorphization, and disordering states. We evaluated representative features in those spectra via various linear and nonlinear dimensionality reduction techniques and used the reduced representation of those features with decision trees to correlate them with structural information unavailable through classical human-identifiable peak analysis. We show that our trained model accurately (over 97% accuracy) and robustly (insensitive to noise) disentangles the contribution from the different material states, hence demonstrating a comprehensive decoding of spectroscopic profiles beyond classical (human-identifiable) peak analysis.
Robust in situ power harvesting underlies all efforts to enable downhole autonomous sensors for real-time and long-term monitoring of CO2 plume movement and permeance, wellbore health, and induced seismicity. This project evaluated the potential use of downhole thermopile arrays, known as thermoelectric generators (TEGs), as power sources to charge sensors for in situ real-time, long-term data capture and transmission. Real-time downhole monitoring will enable “Big Data” techniques and machine learning, using massive amounts of continuous data from embedded sensors, to quantify short- and long-term stability and safety of enhanced oil recovery and/or commercial-scale geologic CO2 storage. This project evaluated possible placement of the TEGs at two different wellbore locations: on the outside of the casing; or on the production tubing. TEGs convert heat flux to electrical power, and in the borehole environment, would convert heat flux into or out of the borehole into power for downhole sensors. Such heat flux would be driven by pumping of cold or hot fluids into the borehole—for instance, injecting supercritical CO2—creating a thermal pulse that could power the downhole sensors. Hence, wireless power generation could be accomplished with in situ TEG energy harvesting. This final report summarizes the project’s efforts that accomplished the creation of a fully operational thermopile field unit, including selection of materials, laboratory benchtop experiments and thermal-hydrologic modeling for design and optimization of the field-scale power generation test unit. Finally, the report describes the field unit that has been built and presents results of performance and survivability testing. The performance and survivability testing evaluated the following: 1) downhole power generation in response to a thermal gradient produced by pumping a heated fluid down a borehole and through the field unit; and 2) component survivability and operation at elevated temperature and pressure conditions representative of field conditions. The performance and survivability testing show that TEG arrays are viable for generating ample energy to power downhole sensors, although it is important to note that developing or connecting to sensors was beyond the scope of this project. This project’s accomplishments thus traversed from a low Technical Readiness Level (TRL) on fundamental concepts of the application and modeling to TRL-5 via testing of the fully integrated field unit for power generation in relevant environments. A fully issued United States Patent covers the wellbore power harvesting technology and applications developed by this project.
Hydrocarbon polymers are used in a wide variety of practical applications. In the field of dynamic compression at extreme pressures, these polymers are used at several high energy density (HED) experimental facilities. One of the most common polymers is poly(methyl methacrylate) or PMMA, also called Plexiglass® or Lucite®. Here, we present high-fidelity, hundreds of GPa range experimental shock compression data measured on Sandia's Z machine. We extend the principal shock Hugoniot for PMMA to more than threefold compression up to 650 GPa and re-shock Hugoniot states up to 1020 GPa in an off-Hugoniot regime, where experimental data are even sparser. These data can be used to put additional constraints on tabular equation of state (EOS) models. The present results provide clear evidence for the need to re-examine the existing tabular EOS models for PMMA above ∼120 GPa as well as perhaps revisit EOSs of similar hydrocarbon polymers commonly used in HED experiments investigating dynamic compression, hydrodynamics, or inertial confinement fusion.
Torrence, Christa E.; Libby, Cara S.; Nie, Wanyi; Stein, Joshua
Perovskite solar cells (PSCs) promise high efficiencies and low manufacturing costs. Most formulations, however, contain lead, which raises health and environmental concerns. In this review, we use a risk assessment approach to identify and evaluate the technology risks to the environment and human health. We analyze the risks by following the technology from production to transportation to installation to disposal and examine existing environmental and safety regulations in each context. We review published data from leaching and air emissions testing and highlight gaps in current knowledge and a need for more standardization. Methods to avoid lead release through introduction of absorbing materials or use of alternative PSC formulations are reviewed. We conclude with the recommendation to develop recycling programs for PSCs and further standardized testing to understand risks related to leaching and fires.
Accurately modeling the impact force used in the analysis of loosely constrained cantilevered pipes conveying fluid is imperative. If little information is known of the motion-limiting constraints used in experiments, the analysis of the system may yield inaccurate predictions. Here in this work, multiple forcing representations of the impact force are defined and analyzed for a cantilevered pipe that conveys fluid. Depending on the representation of the impact force, the dynamics of the pipe can vary greatly when only the stiffness of the constraints is known from experiments. Three gap sizes of the constraints are analyzed, and the representation of the impact force used to analyze the system is found to significantly affect the response of the pipe at each gap size. An investigation on the effects of the vibro-impact force representation is performed through using basin of attraction analysis and nonlinear characterization of the system’s response.
Lees, Arnee; Betti, Riccardo; Knauer, James P.; Gopalaswamy, Varchas; Patel, Dhrumir; Woo, Ka M.; Anderson, Ken S.; Campbell, E.M.; Cao, Duc; Carroll-Nellenback, Jonathan; Epstein, Reuben; Forrest, Chad J.; Goncharov, Valeri N.; Harding, David R.; Hu, Suxing; Igumenshchev, Igor V.; Janezic, Roger T.; Mannion, Owen M.; Bahukutumbi, Radha; Regan, Sean P.; Shvydky, Alex; Shah, Rahul C.; Shmayda, Walter T.; Stoeckl, Christian; Theobald, Wolfgang; Thomas, Cliff A.
Improving the performance of inertial confinement fusion implosions requires physics models that can accurately predict the response to changes in the experimental inputs. Good predictive capability has been demonstrated for the fusion yield using a statistical mapping of simulated outcomes to experimental data [Gopalaswamy et al., Nature 565(771), 581–586 (2019)]. In this paper, a physics-based statistical mapping approach is used to extract and quantify all the major sources of degradation of fusion yield for direct-drive implosions on the OMEGA laser. Here, the yield is found to be dependent on the age of the deuterium tritium fill, the ℓ = 1 asymmetry in the implosion core, the laser beam-to-target size ratio, and parameters related to the hydrodynamic stability. A controlled set of experiments were carried out where only the target fill age was varied while keeping all other parameters constant. The measurements were found to be in excellent agreement with the fill age dependency inferred using the mapping model. In addition, a new implosion design was created, guided by the statistical mapping model by optimizing the trade-offs between increased laser energy coupling at larger target size and the degradations caused by the laser beam-to-target size ratio and hydrodynamic instabilities. When experimentally performed, an increased fusion yield was demonstrated in targets with larger diameters.
As the path towards Urban Air Mobility (UAM) continues to take shape, there are outstanding technical challenges to achieving safe and effective air transportation operations under this new paradigm. To inform and guide technology development for UAM, NASA is investigating the current state-of-the-art in key technology areas including traffic management, detect-and-avoid, and autonomy. In support of this effort, a new perception testbed was developed at NASA Ames Research Center to collect data from an array of sensing systems representative of those that could be found on a future UAM vehicle. This testbed, featuring a Light-Detection-and-Ranging (LIDAR) instrument, a long-wave infrared sensor, and a visible spectrum camera was deployed for a multiday test campaign in the Fog Chamber at Sandia National Laboratories (SNL), in Albuquerque, New Mexico. During the test campaign, fog conditions were created for tests with targets including a human, a resolution chart, and a small unmanned aerial vehicle (sUAV). Here, this paper describes in detail, the developed perception testbed, the experimental setup in the fog chamber, the resulting data, and presents an initial result from analysis of the data with the evaluation of methods to increase contrast through filtering techniques.
Cesium vapor thermionic converters are an attractive method of converting high-temperature heat directly to electricity, but theoretical descriptions of the systems have been difficult due to the multi-step ionization of Cs through inelastic electron-neutral collisions. This work presents particle-in-cell simulations of these converters, using a direct simulation Monte Carlo collision model to track 52 excited states of Cs. These simulations show the dominant role of multi-step ionization, which also varies significantly based on both the applied voltage bias and pressure. The electron energy distribution functions are shown to be highly non-Maxwellian in the cases analyzed here. A comparison with previous approaches is presented, and large differences are found in ionization rates due especially to the fact that previous approaches have assumed Maxwellian electron distributions. Finally, an open question regarding the nature of the plasma sheaths in the obstructed regime is discussed. The one-dimensional simulations did not produce stable obstructed regime operation and thereby do not support the double-sheath hypothesis.
Magnetized turbulence is ubiquitous in many astrophysical and terrestrial plasmas but no universal theory exists. Even the detailed energy dynamics in magnetohydrodynamic (MHD) turbulence are still not well understood. We present a suite of subsonic, super-Alfvénic, high plasma beta MHD turbulence simulations that only vary in their dynamical range, i.e., in their separation between the large-scale forcing and dissipation scales, and their dissipation mechanism (implicit large eddy simulation, ILES, and direct numerical simulation (DNS)). Using an energy transfer analysis framework we calculate the effective numerical viscosities and resistivities, and demonstrate that all ILES calculations of MHD turbulence are resolved and correspond to an equivalent visco-resistive MHD turbulence calculation. Increasing the number of grid points used in an ILES corresponds to lowering the dissipation coefficients, i.e., larger (kinetic and magnetic) Reynolds numbers for a constant forcing scale. Independently, we use this same framework to demonstrate that—contrary to hydrodynamic turbulence—the cross-scale energy fluxes are not constant in MHD turbulence. This applies both to different mediators (such as cascade processes or magnetic tension) for a given dynamical range as well as to a dependence on the dynamical range itself, which determines the physical properties of the flow. We do not observe any indication of convergence even at the highest resolution (largest Reynolds numbers) simulation at 20483 cells, calling into question whether an asymptotic regime in MHD turbulence exists, and, if so, what it looks like.
Ammonia (NH3) is an energy-dense chemical and a vital component of fertilizer. In addition, it is a carbon-neutral liquid fuel and a potential candidate for thermochemical energy storage for high-temperature concentrating solar power (CSP). Currently, NH3 synthesis occurs via the Haber-Bosch process, which requires high pressures (15-25 MPa) and medium to high temperatures (400-500 °C). N2 and H2 are essential feedstocks for this NH3 production process. H2 is generally derived from methane via steam reforming; N2 is sourced from air, after oxygen removal via combustion of hydrocarbons. Both processes consume hydrocarbons, resulting in the release of CO2. In addition, hydrocarbon fuels are burned to produce the heat and mechanical energy required to perform the NH3 reaction, further increasing CO2 emissions. Overall, the production of ammonia via the Haber-Bosch (H-B) process is responsible for up to 1.4% of the world’s carbon emissions. The development of a renewable pathway to NH3 synthesis, which utilizes concentrated solar irradiation as a process heat instead of fossil fuels and operates under low or ambient pressure, will result in a decrease (or elimination) of greenhouse gas emissions as well as avoid the cost, complexity, and safety issues inherent in high-pressure processes. Most current efforts to “green” ammonia production involve either electrolysis or simply replacing the energy source for H-B with renewable electricity, but otherwise leaving the process intact. The effort proposed here would create a new paradigm for the synthesis of NH3 utilizing solar-thermal heat, water, and air as feedstocks, providing a truly green method of production. The overall objective of the STAP (Solar Thermal Ammonia Production) project was to develop a solar thermochemical looping technology to produce and store nitrogen (N2) from air for the subsequent production of ammonia (NH3) via an advanced two-stage process. The goal is a cost-effective and energy efficient technology for the renewable N2 production and synthesis of NH3 from H2 (produced from H2O) and air using solar-thermal energy from concentrating sunlight, under pressures an order of magnitude lower than H-B NH3 production. Our process involves two looping cycles, which do not require catalysts and can be recycled. Over the course of the STAP project, we (1) developed and deeply characterized oxide materials for N2 separation; (2) developed a method for the synthesis of metal nitrides, producing a series of quaternary compounds that have been heretofore unreported; (3) modeled, designed, and fabricated bench-scale tube and on-sun reactors for the N2 production step and demonstrated the ability to separate N2 over multiple cycles in the tube reactor; (4) designed and fabricated a bench-scale Ammonia Synthesis Reactor (ASR) and demonstrated the proof of concept of NH3 synthesis via a novel looping process using metal nitrides over multiple cycles; and (5) completed a systems- and technoeconomic analysis showing the feasibility of ammonia production on a larger scale via the STAP process. The development of renewable, low-cost NH3 will be of great interest to the chemicals industry, particularly agricultural sectors. The CSP industry should be both an important customer and potential end-user of this technology, as it affords the capability of synthesizing a promising thermochemical storage material on-site. Since the NH3 synthesis step also requires H2, there will exist a symbiotic relationship between this technology and solar-thermochemical water-splitting applications. Green ammonia synthesis will result in the decarbonization of a hydrocarbon-intensive industry, helping to meet the Administration goal of industrial decarbonization by 2050. The resulting decrease in CO2 and related pollutants will improve health and well-being of society, particularly for those living in the vicinity of commercial production plants.
Fracture and short circuit in the Li7La3Zr2O12 (LLZO) solid electrolyte are two key issues that prevent its adoption in battery cells. In this paper, we utilize phase-field simulations that couple electrochemistry and fracture to evaluate the maximum electric potential that LLZO electrolytes can support as a function of crack density. In the case of a single crack, we find that the applied potential at the onset of crack propagation exhibits inverse square root scaling with respect to crack length, analogous to classical fracture mechanics. Here, we further find that the short-circuit potential scales linearly with crack length. In the realistic case where the solid electrolyte contains multiple cracks, we reveal that failure fits the Weibull model. The failure distributions shift to favor failure at lower overpotentials as areal crack density increases. Furthermore, when flawless interfacial buffers are placed between the applied potential and the bulk of the electrolyte, failure is mitigated. When constant currents are applied, current focuses in near-surface flaws, leading to crack propagation and short circuit. We find that buffered samples sustain larger currents without reaching unstable overpotentials and without failing. Our findings suggest several mitigation strategies for improving the ability of LLZO to support larger currents and improve operability.
We demonstrate a monolithic all-epitaxial resonant-cavity architecture for long-wave infrared photodetectors with substrate-side illumination. An nBn detector with an ultra-thin (t ≈ 350 nm) absorber layer is integrated into a leaky resonant cavity, formed using semi-transparent highly doped (n + +) epitaxial layers, and aligned to the anti-node of the cavity's standing wave. The devices are characterized electrically and optically and demonstrate an external quantum efficiency of ∼25% at T = 180 K in an architecture compatible with focal plane array configurations.