In magnetized liner inertial fusion (MagLIF), a cylindrical liner filled with fusion fuel is imploded with the goal of producing a one-dimensional plasma column at thermonuclear conditions. However, structures attributed to three-dimensional effects are observed in self-emission x-ray images. Despite this, the impact of many experimental inputs on the column morphology has not been characterized. We demonstrate the use of a linear regression analysis to explore correlations between morphology and a wide variety of experimental inputs across 57 MagLIF experiments. Results indicate the possibility of several unexplored effects. For example, we demonstrate that increasing the initial magnetic field correlates with improved stability. Although intuitively expected, this has never been quantitatively assessed in integrated MagLIF experiments. We also demonstrate that azimuthal drive asymmetries resulting from the geometry of the “current return can” appear to measurably impact the morphology. In conjunction with several counterintuitive null results, we expect the observed correlations will encourage further experimental, theoretical, and simulation-based studies. Finally, we note that the method used in this work is general and may be applied to explore not only correlations between input conditions and morphology but also with other experimentally measured quantities.
For the cylindrically symmetric targets that are normally fielded on the Z machine, two dimensional axisymmetric MHD simulations provide the backbone of our target design capability. These simulations capture the essential operation of the target and allow for a wide range of physics to be addressed at a substantially lower computational cost than 3D simulations. This approach, however, makes some approximations that may impact its ability to accurately provide insight into target operation. As an example, in 2D simulations, targets are able to stagnate directly to the axis in a way that is not entirely physical, leading to uncertainty in the impact of the dynamical instabilities that are an important source of degradation for ICF concepts. In this report, we have performed a series of 3D calculations in order to assess the importance of this higher fidelity treatment on MagLIF target performance.
An x-ray imaging scheme using spherically bent crystals was implemented on the Z-machine to image x rays emitted by the hot, dense plasma generated by a Magnetized Liner Inertial Fusion (MagLIF) target. This diagnostic relies on a spherically bent crystal to capture x-ray emission over a narrow spectral range (<15 eV), which is established by a limiting aperture placed on the Rowland circle. The spherical crystal optic provides the necessary high-throughput and large field-of-view required to produce a bright image over the entire, one-cm length of the emitting column of a plasma. The average spatial resolution was measured and determined to be 18 µm for the highest resolution configuration. With this resolution, the radial size of the stagnation column can be accurately determined and radial structures, such as bifurcations in the column, are clearly resolved. The success of the spherical-crystal imager has motivated the implementation of a new, two-crystal configuration for identifying sources of spectral line emission using a differential imaging technique.
In magneto-inertial fusion, the ratio of the characteristic fuel length perpendicular to the applied magnetic field R to the α-particle Larmor radius Q α is a critical parameter setting the scale of electron thermal-conduction loss and charged burn-product confinement. Using a previously developed deep-learning-based Bayesian inference tool, we obtain the magnetic-field fuel-radius product B R ∝ R / Q α from an ensemble of 16 magnetized liner inertial fusion (MagLIF) experiments. Observations of the trends in BR are consistent with relative trade-offs between compression and flux loss as well as the impact of mix from 1D resistive radiation magneto-hydrodynamics simulations in all but two experiments, for which 3D effects are hypothesized to play a significant role. Finally, we explain the relationship between BR and the generalized Lawson parameter χ. Our results indicate the ability to improve performance in MagLIF through careful tuning of experimental inputs, while also highlighting key risks from mix and 3D effects that must be mitigated in scaling MagLIF to higher currents with a next-generation driver.
We report on progress implementing and testing cryogenically cooled platforms for Magnetized Liner Inertial Fusion (MagLIF) experiments. Two cryogenically cooled experimental platforms were developed: an integrated platform fielded on the Z pulsed power generator that combines magnetization, laser preheat, and pulsed-power-driven fuel compression and a laser-only platform in a separate chamber that enables measurements of the laser preheat energy using shadowgraphy measurements. The laser-only experiments suggest that ∼89% ± 10% of the incident energy is coupled to the fuel in cooled targets across the energy range tested, significantly higher than previous warm experiments that achieved at most 67% coupling and in line with simulation predictions. The laser preheat configuration was applied to a cryogenically cooled integrated experiment that used a novel cryostat configuration that cooled the MagLIF liner from both ends. The integrated experiment, z3576, coupled 2.32 ± 0.25 kJ preheat energy to the fuel, the highest to-date, demonstrated excellent temperature control and nominal current delivery, and produced one of the highest pressure stagnations as determined by a Bayesian analysis of the data.
Here we present a new analysis methodology that allows for the self-consistent integration of multiple diagnostics including nuclear measurements, x-ray imaging, and x-ray power detectors to determine the primary stagnation parameters, such as temperature, pressure, stagnation volume, and mix fraction in magnetized liner inertial fusion (MagLIF) experiments. The analysis uses a simplified model of the stagnation plasma in conjunction with a Bayesian inference framework to determine the most probable configuration that describes the experimental observations while simultaneously revealing the principal uncertainties in the analysis. We validate the approach by using a range of tests including analytic and three-dimensional MHD models. An ensemble of MagLIF experiments is analyzed, and the generalized Lawson criterion χ is estimated for all experiments.
We report on experimental measurements of how an externally imposed magnetic field affects plasma heating by kJ-class, nanosecond laser pulses. The experiments reported here took place in gas cells analogous to magnetized liner inertial fusion targets. We observed significant changes in laser propagation and energy deposition scale lengths when a 12T external magnetic field was imposed in the gas cell. We find evidence that the axial magnetic field reduces radial electron thermal transport, narrows the width of the heated plasma, and increases the axial plasma length. Reduced thermal conductivity increases radial thermal gradients. This enhances radial hydrodynamic expansion and subsequent thermal self-focusing. Our experiments and supporting 3D simulations in helium demonstrate that magnetization leads to higher thermal gradients, higher peak temperatures, more rapid blast wave development, and beam focusing with an applied field of 12T.
Fuel magnetization in magneto-inertial fusion (MIF) experiments improves charged burn product confinement, reducing requirements on fuel areal density and pressure to achieve self-heating. By elongating the path length of 1.01 MeV tritons produced in a pure deuterium fusion plasma, magnetization enhances the probability for deuterium-tritium reactions producing 11.8−17.1 MeV neutrons. Nuclear diagnostics thus enable a sensitive probe of magnetization. Characterization of magnetization, including uncertainty quantification, is crucial for understanding the physics governing target performance in MIF platforms, such as magnetized liner inertial fusion (MagLIF) experiments conducted at Sandia National Laboratories, Z-facility. We demonstrate a deep-learned surrogate of a physics-based model of nuclear measurements. A single model evaluation is reduced from CPU hours on a high-performance computing cluster down to ms on a laptop. This enables a Bayesian inference of magnetization, rigorously accounting for uncertainties from surrogate modeling and noisy nuclear measurements. The approach is validated by testing on synthetic data and comparing with a previous study. We analyze a series of MagLIF experiments systematically varying preheat, resulting in the first ever systematic experimental study of magnetic confinement properties of the fuel plasma as a function of fundamental inputs on any neutron-producing MIF platform. We demonstrate that magnetization decreases from B ∼0.5 to B MG cm as laser preheat energy deposited increases from preheat ∼460 J to E preheat ∼1.4 kJ. This trend is consistent with 2D LASNEX simulations showing Nernst advection of the magnetic field out of the hot fuel and diffusion into the target liner.
MagLIF experiments [M.R. Gomez et al., Phys. Plasmas 22, 056306 (2015)] on Z have demonstrated the basic principles of Magneto-Inertial Fusion (MIF) for wall confined plasmas. Other MIF schemes have been proposed based on the liner implosion of closed field magnetically confined plasmas such as Field Reversed Configurations (FRCs) [T. P. Intrator et al., Phys. Plasmas 15, 042505 (2008)]. We present a semi-analytical model of liner driven FRC implosions that predicts the fusion gain of such systems. The model predicts a fusion gain near unity for an FRC imploded by a liner driven by the Z Machine. We show that FRCs could be formed and imploded at the Z facility using the AutoMag liner concept [S. A. Slutz et al., Phys. Plasmas 24, 012704 (2017)]. An initial bias magnetic field can be supplied by the external magnets used in MagLIF experiments. The reverse field is then supplied by an AutoMag liner, which has helical conducting paths imbedded in an insulating substance. Experiments [Shipley et al., Phys. Plasmas 26, 052705 (2019)] have demonstrated that AutoMag can generate magnetic fields greater than 30 Tesla inside of the liner. We have performed 2D Radiation MHD simulations of the formation and implosion of an FRC, which are in good agreement with the analytical model. The FRC formation process could be studied on small pulsed power machines delivering about 1 MA.
We have commissioned a new time-resolved, x-ray imaging diagnostic for the Z facility. The primary intended application is for diagnosing the stagnation behavior of Magnetized Liner Inertial Fusion (MagLIF) and similar targets. We have a variety of imaging systems at Z, both time-integrated and time-resolved, that provide valuable x-ray imaging information, but no system at Z up to this time provides a combined high-resolution imaging with multi-frame time resolution; this new diagnostic, called TRICXI for Time Resolved In-Chamber X-ray Imager, is meant to provide time-resolved spatial imaging with high resolution. The multi-frame camera consists of a microchannel plate camera. A key component to achieving the design goals is to place the instrument inside the Z vacuum chamber within 2 m of the load, which necessitates a considerable amount of x-ray shielding as well as a specially designed, independent vacuum system. A demonstration of the imaging capability for a series of MagLIF shots is presented. Predictions are given for resolution and relative image irradiance to guide experimenters in choosing the desired configuration for their experiments.
The inductively driven transmission line (IDTL) is a miniature current-carrying device that passively couples to fringe magnetic fields in the final power feed on the Z Pulsed Power Facility. The IDTL redirects a small amount of Z's magnetic energy along a secondary path to ground, thereby enabling pulsed power diagnostics to be driven in parallel with the primary load for the first time. IDTL experiments and modeling presented here indicate that IDTLs operate non-perturbatively on Z and that they can draw in excess of 150 kA of secondary current, which is enough to drive an X-pinch backlighter. Additional experiments show that IDTLs are also capable of making cleaner, higher-fidelity measurements of the current flowing in the final feed.