Publications

Results 1–25 of 27

Search results

Jump to search filters

MRT 7365 Power flow physics and key physics phenomena: EMPIRE verification suite

Sirajuddin, David; Hamlin, Nathaniel D.; Evstatiev, Evstati G.; Hess, Mark H.; Cartwright, Keith

This milestone work baselines electromagnetic particle-in-cell capability of the EMPIRE plasma simulation code to model key processes germane to the physics of electrode plasmas arising in magnetically-insulated transmission lines operating at or near 20 MA. This evaluation is done so through the provision of benchmark verification problems designed to exercise the individual and combined physics models on a small-scale surrogate geometry for the final-feed-to-load region of the Z accelerator under representative operating conditions. In this report, we overview our test designs, and present a portfolio of simulation results along with performance assessments which altogether establish state-of-the-art. In particular, two main verification categories are covered this report: (1) Z-relevant desorption physics (Temkin isotherm), and (2) two approaches to simulate electrode plasma creation and dynamics (automatic creation versus self-consistent creation through direct simulation Monte Carlo collisions).

More Details

Hall interchange instability as a seed for helical magneto-Rayleigh–Taylor instabilities in magnetized liner inertial fusion Z-Pinches scaled from Z-Machine parameters to a next generation pulsed power facility

Physics of Plasmas

Woolstrum, Jeffrey M.; Ruiz, Daniel E.; Hamlin, Nathaniel D.; Beckwith, Kristian; Martin, Matthew R.

Magnetized liner inertial fusion (MagLIF) is a magneto-inertial-fusion concept that is studied on the 20-MA, 100-ns rise time Z Pulsed Power Facility at Sandia National Laboratories. Given the relative success of the platform, there is a wide interest in studying the scaled performance of this concept at a next-generation pulsed-power facility that may produce peak currents upward of 60 MA. An important aspect that requires more research is the instability dynamics of the imploding MagLIF liner, specifically how instabilities are initially seeded. It has been shown in magnetized 1-MA thin-foil liner Z-pinch implosion simulations that a Hall interchange instability (HII) effect can provide an independent seeding mechanism for helical magneto-Rayleigh–Taylor instabilities. Here in this paper, we explore this instability at higher peak currents for MagLIF using 2D discontinuous Galerkin PERSEUS simulations, an extended magneto-hydrodynamics code, which includes Hall physics. Our simulations of scaled MagLIF loads show that the growth rate of the HII is invariant to the peak current, suggesting that studies at 20-MA are directly relevant to 60-MA class machines.

More Details

Hall interchange instability as a seed for helical magneto-Rayleigh-Taylor instabilities in magnetized liner inertial fusion Z-Pinches scaled from Z-Machine parameters to a next generation pulsed power facility

Physics of Plasmas

Woolstrum, Jeffrey M.; Ruiz, Daniel E.; Hamlin, Nathaniel D.; Beckwith, Kristian; Martin, Matthew R.

Magnetized liner inertial fusion (MagLIF) is a magneto-inertial-fusion concept that is studied on the 20-MA, 100-ns rise time Z Pulsed Power Facility at Sandia National Laboratories. Given the relative success of the platform, there is a wide interest in studying the scaled performance of this concept at a next-generation pulsed-power facility that may produce peak currents upward of 60 MA. An important aspect that requires more research is the instability dynamics of the imploding MagLIF liner, specifically how instabilities are initially seeded. It has been shown in magnetized 1-MA thin-foil liner Z-pinch implosion simulations that a Hall interchange instability (HII) effect [J. M. Woolstrum et al., Phys. Plasmas 29, 122701 (2022)] can provide an independent seeding mechanism for helical magneto-Rayleigh-Taylor instabilities. In this paper, we explore this instability at higher peak currents for MagLIF using 2D discontinuous Galerkin PERSEUS simulations, an extended magneto-hydrodynamics code [C. E. Seyler and M. R. Martin, Phys. Plasmas 18, 012703 (2011)], which includes Hall physics. Our simulations of scaled MagLIF loads show that the growth rate of the HII is invariant to the peak current, suggesting that studies at 20-MA are directly relevant to 60-MA class machines.

More Details

Electrostatic Relativistic Fluid Models of Electron Emission in a Warm Diode

IEEE Transactions on Plasma Science

Hamlin, Nathaniel D.; Smith, Thomas M.; Roberds, Nicholas A.; Foulk, James W.; Beckwith, Kristian

A semianalytic fluid model has been developed for characterizing relativistic electron emission across a warm diode gap. We demonstrate the use of this model in: 1) verifying multifluid codes in modeling compressible relativistic electron flows (the EMPIRE-Fluid code is used as an example); 2) elucidating key physics mechanisms characterizing the influence of compressibility and relativistic injection speed of the electron flow; and 3) characterizing the regimes over which a fluid model recovers physically reasonable solutions.

More Details

Electrostatic Relativistic Fluid Models of Electron Emission in a Warm Diode

IEEE International Conference on Plasma Science (ICOPS)

Hamlin, Nathaniel D.; Smith, Thomas M.; Roberds, Nicholas A.; Foulk, James W.; Beckwith, Kristian

A semi-analytic fluid model has been developed for characterizing relativistic electron emission across a warm diode gap. Here we demonstrate the use of this model in (i) verifying multi-fluid codes in modeling compressible relativistic electron flows (the EMPIRE-Fluid code is used as an example; see also Ref. 1), (ii) elucidating key physics mechanisms characterizing the influence of compressibility and relativistic injection speed of the electron flow, and (iii) characterizing the regimes over which a fluid model recovers physically reasonable solutions.

More Details

Towards Predictive Plasma Science and Engineering through Revolutionary Multi-Scale Algorithms and Models (Final Report)

Laity, George R.; Robinson, Allen C.; Cuneo, Michael E.; Alam, Kathleen M.; Beckwith, Kristian; Bennett, Nichelle L.; Bettencourt, Matthew T.; Bond, Stephen D.; Cochrane, Kyle; Criscenti, Louise; Cyr, Eric C.; Foulk, James W.; Drake, Richard R.; Evstatiev, Evstati G.; Fierro, Andrew S.; Gardiner, Thomas A.; Foulk, James W.; Goeke, Ronald S.; Hamlin, Nathaniel D.; Hooper, Russell; Koski, Jason P.; Lane, James M.D.; Larson, Steven R.; Leung, Kevin; Mcgregor, Duncan A.O.; Miller, Philip R.; Miller, Sean; Ossareh, Susan J.; Phillips, Edward; Simpson, Sean; Sirajuddin, David; Smith, Thomas M.; Swan, Matthew S.; Thompson, A.P.; Tranchida, Julien; Bortz-Johnson, Asa J.; Welch, Dale; Russell, Alex; Watson, Eric; Rose, David; Mcbride, Ryan

This report describes the high-level accomplishments from the Plasma Science and Engineering Grand Challenge LDRD at Sandia National Laboratories. The Laboratory has a need to demonstrate predictive capabilities to model plasma phenomena in order to rapidly accelerate engineering development in several mission areas. The purpose of this Grand Challenge LDRD was to advance the fundamental models, methods, and algorithms along with supporting electrode science foundation to enable a revolutionary shift towards predictive plasma engineering design principles. This project integrated the SNL knowledge base in computer science, plasma physics, materials science, applied mathematics, and relevant application engineering to establish new cross-laboratory collaborations on these topics. As an initial exemplar, this project focused efforts on improving multi-scale modeling capabilities that are utilized to predict the electrical power delivery on large-scale pulsed power accelerators. Specifically, this LDRD was structured into three primary research thrusts that, when integrated, enable complex simulations of these devices: (1) the exploration of multi-scale models describing the desorption of contaminants from pulsed power electrodes, (2) the development of improved algorithms and code technologies to treat the multi-physics phenomena required to predict device performance, and (3) the creation of a rigorous verification and validation infrastructure to evaluate the codes and models across a range of challenge problems. These components were integrated into initial demonstrations of the largest simulations of multi-level vacuum power flow completed to-date, executed on the leading HPC computing machines available in the NNSA complex today. These preliminary studies indicate relevant pulsed power engineering design simulations can now be completed in (of order) several days, a significant improvement over pre-LDRD levels of performance.

More Details
Results 1–25 of 27
Results 1–25 of 27