Data acquisition for the design and control of physical systems
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Research
We develop an adaptive method for quantum state preparation that utilizes randomness as an essential component and that does not require classical optimization. Instead, a cost function is minimized to prepare a desired quantum state through an adaptively constructed quantum circuit, where each adaptive step is informed by feedback from gradient measurements in which the associated tangent space directions are randomized. We provide theoretical arguments and numerical evidence that convergence to the target state can be achieved for almost all initial states. We investigate different randomization procedures and develop lower bounds on the expected cost function change, which allows for drawing connections to barren plateaus and for assessing the applicability of the algorithm to large-scale problems.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Remote Sensing
High-altitude balloons carrying infrasound sensor payloads can be leveraged toward monitoring efforts to provide some advantages over other sensing modalities. On 10 July 2020, three sets of controlled surface explosions generated infrasound waves detected by a high-altitude floating sensor. One of the signal arrivals, detected when the balloon was in the acoustic shadow zone, could not be predicted via propagation modeling using a model atmosphere. Considering that the balloon’s horizontal motion showed direct evidence of gravity waves, we examined their role in infrasound propagation. Implementation of gravity wave perturbations to the wind field explained the signal detection and aided in correctly predicting infrasound travel times. Our results show that the impact of gravity waves is negligible below 20 km altitude; however, their effect is important above that height. The results presented here demonstrate the utility of balloon-borne acoustic sensing toward constraining the source region of variability, as well as the relevance of complexities surrounding infrasound wave propagation at short ranges for elevated sensing platforms.