Publications

Results 56501–56600 of 99,299

Search results

Jump to search filters

Analysis of SAR autofocus performance

Proceedings of SPIE the International Society for Optical Engineering

Naething, Richard M.; West, Roger D.

High quality focused SAR imaging dictates that the relative phase error over an aperture must be kept below a fraction of a wavelength. On most deployed SAR systems the internal measurement systems ability to measure position uncertainty is not sufficient to achieve this required precision. This necessitates an additional post-processing step of data-driven phase error mitigation known as autofocus. We present results comparing the performance of a variety of autofocus techniques including image metric optimization based techniques and several variants of phase gradient autofocus (PGA). The degree of focusing is evaluated with an image focus metric, specific to SAR images, that is not biased toward any particular autofocus algorithm. This evaluation is performed on a variety of scene types using injected (known) phase errors. We show that PGA autofocus outperforms the image metric optimization techniques tested (based on minimizing image entropy) in low contrast SAR scenes. © 2013 SPIE.

More Details

A method to evaluate residual phase error for polar formatted synthetic aperture radar systems

Proceedings of SPIE - The International Society for Optical Engineering

Musgrove, Cameron; Naething, Richard M.

Synthetic aperture radar systems that use the polar format algorithm are subject to a focused scene size limit inherent to the polar format algorithm. The classic focused scene size limit is determined from the dominant residual range phase error term. Given the many sources of phase error in a synthetic aperture radar, a system designer is interested in how much phase error results from the assumptions made with the polar format algorithm. Autofocus algorithms have limits to the amount and type of phase error that can be corrected. Current methods correct only one or a few terms of the residual phase error. A system designer needs to be able to evaluate the contribution of the residual or uncorrected phase error terms to determine the new focused scene size limit. This paper describes a method to estimate the complete residual phase error, not just one or a few of the dominant residual terms. This method is demonstrated with polar format image formation, but is equally applicable to other image formation algorithms. A benefit for the system designer is that additional correction terms can be added or deleted from the analysis as necessary to evaluate the resulting effect upon image quality. © 2013 SPIE.

More Details

Analysis of SAR autofocus performance

Proceedings of SPIE - The International Society for Optical Engineering

Naething, Richard M.; West, Roger D.

High quality focused SAR imaging dictates that the relative phase error over an aperture must be kept below a fraction of a wavelength. On most deployed SAR systems the internal measurement systems ability to measure position uncertainty is not sufficient to achieve this required precision. This necessitates an additional post-processing step of data-driven phase error mitigation known as autofocus. We present results comparing the performance of a variety of autofocus techniques including image metric optimization based techniques and several variants of phase gradient autofocus (PGA). The degree of focusing is evaluated with an image focus metric, specific to SAR images, that is not biased toward any particular autofocus algorithm. This evaluation is performed on a variety of scene types using injected (known) phase errors. We show that PGA autofocus outperforms the image metric optimization techniques tested (based on minimizing image entropy) in low contrast SAR scenes. © 2013 SPIE.

More Details

Polarization as a field variable from molecular dynamics simulations

Journal of Chemical Physics

Mandadapu, Kranthi K.; Templeton, J.A.; Lee, Jonathan W.

A theoretical and computational framework for systematically calculating the macroscopic polarization density as a field variable from molecular dynamics simulations is presented. This is done by extending the celebrated Irving and Kirkwood [J. Chem. Phys. 18, 817 (1950)10.1063/1.1747782] procedure, which expresses macroscopic stresses and heat fluxes in terms of the atomic variables, to the case of electrostatics. The resultant macroscopic polarization density contains molecular dipole, quadrupole, and higher-order moments, and can be calculated to a desired accuracy depending on the degree of the coarse-graining function used to connect the molecular and continuum scales. The theoretical and computational framework is verified by recovering the dielectric constant of bulk water. Finally, the theory is applied to calculate the spatial variation of the polarization vector in the electrical double layer of a 1:1 electrolyte solution. Here, an intermediate asymptotic length scale is revealed in a specific region, which validates the application of mean field Poisson-Boltzmann theory to describe this region. Also, using the existence of this asymptotic length scale, the lengths of the diffuse and condensed/Stern layers are identified accurately, demonstrating that this framework may be used to characterize electrical double layers over a wide range of concentrations of solutions and surface charges. © 2013 AIP Publishing LLC.

More Details

Fault localization and failure modes in microsystems-enabled photovoltaic devices

IEEE International Reliability Physics Symposium Proceedings

Cruz-Campa, Jose L.; Haase, Gaddi S.; Tangyunyong, Paiboon; Colr, Edward I.; Pimentel, Alejandro A.; Resnick, Paul; Okandan, Murat; Nielson, Gregory N.

Microsystems-enabled photovoltaic (MEPV) technology is a promising approach to lower the cost of solar energy to competitive levels. This paper describes current development efforts to leverage existing silicon integrated circuit (IC) failure analysis (FA) techniques to study MEPV devices. Various FA techniques such as light emission microscopy and laser-based fault localization were used to identify and characterize primary failure modes after fabrication and packaging. The FA results provide crucial information used in provide corrective actions and improve existing MEPV fabrication techniques. © 2013 IEEE.

More Details

Fault localization and failure modes in microsystems-enabled photovoltaic devices

IEEE International Reliability Physics Symposium Proceedings

Yang, Benjamin B.; Cruz-Campa, Jose L.; Haase, Gaddi S.; Tangyunyong, Paiboon; Colr, Edward I.; Pimentel, Alejandro A.; Resnick, Paul; Okandan, Murat; Nielson, Gregory N.

Microsystems-enabled photovoltaic (MEPV) technology is a promising approach to lower the cost of solar energy to competitive levels. This paper describes current development efforts to leverage existing silicon integrated circuit (IC) failure analysis (FA) techniques to study MEPV devices. Various FA techniques such as light emission microscopy and laser-based fault localization were used to identify and characterize primary failure modes after fabrication and packaging. The FA results provide crucial information used in provide corrective actions and improve existing MEPV fabrication techniques. © 2013 IEEE.

More Details

Optical anisotropy near the relaxor-ferroelectric phase transition in lanthanum lead zirconate titanate

Journal of Applied Physics

Brown-Shaklee, Harlan J.; Rodriguez, Mark A.; Brennecka, Geoff

We examine the optical activity, birefringence, and transparency of Lanthanum-doped, lead zirconate titanate (PLZT 7/65/35) bulk ceramic wafer sections over visible and near-IR spectra and on heating. Optical transitions are compared to both crystallographic (rhombohedral-cubic) and domain (relaxor-ferroelectric) transitions identified with x-ray diffraction, dielectric, and calorimetry measurements. Optical activity and birefringence are shown to be enhanced for disordered domains near room temperature, to attenuate above the relaxor-ferroelectric transition and to gradually decay above the Curie point regardless of the initial poling state. The results are interpreted in light of the change of crystallographic symmetry due to the local strains induced by ferroelectric architecture. The heterogeneous local strains more strongly influence the optical properties than the macro-scale structure of the polycrystalline PLZT ceramic. This mechanism is significant for understanding optical rotation and birefringence in polycrystalline systems. Finally, the specific rotation (up to 350°/mm) lies among the highest reported for crystalline materials. Along with strong poling contrast and comparatively small dispersion for the unpoled state, these properties are promising for electro-optics applications. © 2013 AIP Publishing LLC.

More Details

Note: Absolute photoionization cross-section of the vinyl radical

Journal of Chemical Physics

Savee, John D.; Lockyear, Jessica F.; Borkar, Sampada; Eskola, Arkke J.; Welz, Oliver W.; Taatjes, Craig A.; Osborn, David L.

This work measures the absolute photoionization cross-section of the vinyl radical (σvinyl(E)) between 8.1 and 11.0 eV. Two different methods were used to obtain absolute cross-section measurements: 193 nm photodissociation of methyl vinyl ketone (MVK) and 248 nm photodissociation of vinyl iodide (VI). The values of the photoionization cross-section for the vinyl radical using MVK, σvinyl(10.224 eV) = (6.1 ± 1.4) Mb and σvinyl(10.424 eV) = (8.3 ± 1.9) Mb, and using VI, σvinyl(10.013 eV) = (4.7 ± 1.1) Mb, σ vinyl(10.513 eV) = (9.0 ± 2.1) Mb, and σ vinyl(10.813 eV) = (12.1 ± 2.9) Mb, define a photoionization cross-section that is ∼1.7 times smaller than a previous determination of this value. © 2013 AIP Publishing LLC.

More Details

An international initiative on long-term behavior of high-level nuclear waste glass

Materials Today

Nations using borosilicate glass as an immobilization material for radioactive waste have reinforced the importance of scientific collaboration to obtain a consensus on the mechanisms controlling the long-term dissolution rate of glass. This goal is deemed to be crucial for the development of reliable performance assessment models for geological disposal. The collaborating laboratories all conduct fundamental and/or applied research using modern materials science techniques. This paper briefly reviews the radioactive waste vitrification programs of the six participant nations and summarizes the current state of glass corrosion science, emphasizing the common scientific needs and justifications for on-going initiatives.

More Details

Frequency-Dependent Enhancement of Fluid Intelligence Induced by Transcranial Oscillatory Potentials

Current Biology

Matzen, Laura E.

Everyday problem solving requires the ability to go beyond experience by efficiently encoding and manipulating new information, i.e., fluid intelligence (Gf) [1]. Performance in tasks involving Gf, such as logical and abstract reasoning, has been shown to rely on distributed neural networks, with a crucial role played by prefrontal regions [2]. Synchronization of neuronal activity in the gamma band is a ubiquitous phenomenon within the brain; however, no evidence of its causal involvement in cognition exists to date [3]. Here, we show an enhancement of Gf ability in a cognitive task induced by exogenous rhythmic stimulation within the gamma band. Imperceptible alternating current [4] delivered through the scalp over the left middle frontal gyrus resulted in a frequency-specific shortening of the time required to find the correct solution in a visuospatial abstract reasoning task classically employed to measure Gf abilities (i.e., Raven’s matrices) [5]. Crucially, gamma-band stimulation (γ-tACS) selectively enhanced performance only on more complex trials involving conditional/logical reasoning. The finding presented here supports a direct involvement of gamma oscillatory activity in the mechanisms underlying higher-order human cognition.

More Details

Optimizing TaOx memristor performance and consistency within the reactive sputtering "forbidden region"

Applied Physics Letters

Lohn, Andrew J.; Stevens, James E.; Mickel, Patrick R.; Marinella, Matthew

Standard deposition processes for depositing ReRAM oxides utilize mass flow of reactive gas to control stoichiometry and have difficulty depositing a precisely defined sub-stoichiometry within a "forbidden region" where film properties are discontinuous with mass flow. We show that by maintaining partial pressure within this discontinuous "forbidden region," instead of by maintaining mass flow, we can optimize tantalum oxide device properties and reduce or eliminate the electroforming step. We also show that defining the partial pressure set point as a fraction of the "forbidden region" instead of as an absolute value can be used to improve wafer-to-wafer consistency with minimal recalibration efforts. © 2013 AIP Publishing LLC.

More Details

Product branching fractions of the CH + propene reaction from synchrotron photoionization mass spectrometry

Journal of Physical Chemistry A

Trevitt, Adam J.; Prendergast, Matthew B.; Goulay, Fabien; Savee, John D.; Osborn, David L.; Taatjes, Craig A.; Leone, Stephen R.

The CH(X2Π) + propene reaction is studied in the gas phase at 298 K and 4 Torr (533.3 Pa) using VUV synchrotron photoionization mass spectrometry. The dominant product channel is the formation of C 4H6 (m/z 54) + H. By fitting experimental photoionization spectra to measured spectra of known C4H6 isomers, the following relative branching fractions are obtained: 1,3-butadiene (0.63 ± 0.13), 1,2-butadiene (0.25 ± 0.05), and 1-butyne (0.12 ± 0.03) with no detectable contribution from 2-butyne. The CD + propene reaction is also studied and two product channels are observed that correspond to C 4H6 (m/z 54) + D and C4H5D (m/z 55) + H, formed at a ratio of 0.4 (m/z 54) to 1.0 (m/z 55). The D elimination channel forms almost exclusively 1,2-butadiene (0.97 ± 0.20) whereas the H elimination channel leads to the formation of deuterated 1,3-butadiene (0.89 ± 0.18) and 1-butyne (0.11 ± 0.02); photoionization spectra of undeuterated species are used in the fitting of the measured m/z 55 (C 4H5D) spectrum. The results are generally consistent with a CH cycloaddition mechanism to the C-C bond of propene, forming 1-methylallyl followed by elimination of a H atom via several competing processes. The direct detection of 1,3-butadiene as a reaction product is an important validation of molecular weight growth schemes implicating the CH + propene reaction, for example, those reported recently for the formation of benzene in the interstellar medium (Jones, B. M. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 452-457). © 2013 American Chemical Society.

More Details

Parallel auto-correlative statistics with VTK

Bennett, Janine C.

This report summarizes existing statistical engines in VTK and presents both the serial and parallel auto-correlative statistics engines. It is a sequel to [PT08, BPRT09b, PT09, BPT09, PT10] which studied the parallel descriptive, correlative, multi-correlative, principal component analysis, contingency, k-means, and order statistics engines. The ease of use of the new parallel auto-correlative statistics engine is illustrated by the means of C++ code snippets and algorithm verification is provided. This report justifies the design of the statistics engines with parallel scalability in mind, and provides scalability and speed-up analysis results for the autocorrelative statistics engine.

More Details

Ultrafast laser diagnostics to investigate initiation fundamentals in energetic materials

Farrow, Darcie; Kearney, Sean P.; Jilek, Brook A.; Kohl, Ian T.

We present the results of a two year early career LDRD project, which has focused on the development of ultrafast diagnostics to measure temperature, pressure and chemical change during the shock initiation of energetic materials. We compare two single-shot versions of femtosecond rotational CARS to measure nitrogen temperature: chirped-probe-pulse and ps/fs hybrid CARS thermometry. The applicability of measurements to the combustion of energetic materials will be discussed. We have also demonstrated laser shock and particle velocity measurements in thin film explosives using stretched femtosecond laser pulses. We will discuss preliminary results from Al and PETN thin films. Agreement between our results and previous work will be discussed.

More Details

Thermal conduction in particle packs via finite elements

AIP Conference Proceedings

Lechman, Jeremy B.; Yarrington, C.D.; Erikson, William W.; Noble, David R.

Conductive transport in heterogeneous materials composed of discrete particles is a fundamental problem for a number of applications. While analytical results and rigorous bounds on effective conductivity in mono-sized particle dispersions are well established in the literature, the methods used to arrive at these results often fail when the average size of particle clusters becomes large (i.e., near the percolation transition where particle contact networks dominate the bulk conductivity). Our aim is to develop general, efficient numerical methods that would allow us to explore this behavior and compare to a recent microstructural description of conduction in this regime. To this end, we present a finite element analysis approach to modeling heat transfer in granular media with the goal of predicting effective bulk thermal conductivities of particle-based heterogeneous composites. Our approach is verified against theoretical predictions for random isotropic dispersions of mono-disperse particles at various volume fractions up to close packing. Finally, we present results for the probability distribution of the effective conductivity in particle dispersions generated by Brownian dynamics, and suggest how this might be useful in developing stochastic models of effective properties based on the dynamical process involved in creating heterogeneous dispersions. © 2013 AIP Publishing LLC.

More Details

Bryan Mound SPR cavern 113 remedial leach stage 1 analysis

Weber, Paula D.; Lord, David

The U.S. Strategic Petroleum Reserve implemented the first stage of a leach plan in 2011-2012 to expand storage volume in the existing Bryan Mound 113 cavern from a starting volume of 7.4 million barrels (MMB) to its design volume of 11.2 MMB. The first stage was terminated several months earlier than expected in August, 2012, as the upper section of the leach zone expanded outward more quickly than design. The oil-brine interface was then re-positioned with the intent to resume leaching in the second stage configuration. This report evaluates the as-built configuration of the cavern at the end of the first stage, and recommends changes to the second stage plan in order to accommodate for the variance between the first stage plan and the as-built cavern. SANSMIC leach code simulations are presented and compared with sonar surveys in order to aid in the analysis and offer projections of likely outcomes from the revised plan for the second stage leach.

More Details

MicroShield/ISOCS gamma modeling comparison

Sansone, Kenneth R.

Quantitative radiological analysis attempts to determine the quantity of activity or concentration of specific radionuclide(s) in a sample. Based upon the certified standards that are used to calibrate gamma spectral detectors, geometric similarities between sample shape and the calibration standards determine if the analysis results developed are qualitative or quantitative. A sample analyzed that does not mimic a calibrated sample geometry must be reported as a non-standard geometry and thus the results are considered qualitative and not quantitative. MicroShieldR or ISOCSR calibration software can be used to model non-standard geometric sample shapes in an effort to obtain a quantitative analytical result. MicroShieldR and Canberras ISOCSR software contain several geometry templates that can provide accurate quantitative modeling for a variety of sample configurations. Included in the software are computational algorithms that are used to develop and calculate energy efficiency values for the modeled sample geometry which can then be used with conventional analysis methodology to calculate the result. The response of the analytical method and the sensitivity of the mechanical and electronic equipment to the radionuclide of interest must be calibrated, or standardized, using a calibrated radiological source that contains a known and certified amount of activity.

More Details

Thermal degradation of new and aged urethane foam and epon 826 epoxy

Mills, Bernice E.

Thermal desorption spectroscopy was used to monitor the decomposition as a function of temperature for the foam and epoxy as a function of temperature in the range of 60C to 170C. Samples were studied with one day holds at each of the studied temperatures. Both new (FoamN and EpoxyN) and aged (FoamP and EpoxyP) samples were studied. During these ~10 day experiments, the foam samples lost 11 to 13% of their weight and the EpoxyN lost 10% of its weight. The amount of weight lost was difficult to quantify for EpoxyP because of its inert filler. The onset of the appearance of organic degradation products from FoamP began at 110C. Similar products did not appear until 120C for FoamN, suggesting some effect of the previous decades of storage for FoamP. In the case of the epoxies, the corresponding temperatures were 120C for EpoxyP and 110C for EpoxyN. Suggestions for why the aged epoxy seems more stable than newer sample include the possibility of incomplete curing or differences in composition. Recommendation to limit use temperature to 90-100C for both epoxy and foam.

More Details
Results 56501–56600 of 99,299
Results 56501–56600 of 99,299