Publications

Results 1–25 of 34

Search results

Jump to search filters

Mapping of radiation-induced resistance changes and multiple conduction channels in TaOx memristors

IEEE Transactions on Nuclear Science

Hughart, David R.; Pacheco, Jose L.; Lohn, Andrew L.; Mickel, Patrick R.; Bielejec, Edward S.; Vizkelethy, Gyorgy V.; Doyle, Barney L.; Wolfley, Steven L.; Dodd, Paul E.; Shaneyfelt, Marty R.; McLain, Michael L.; Marinella, Matthew J.

The locations of conductive regions in TaOx memristors are spatially mapped using a microbeam and Nanoimplanter by rastering an ion beam across each device while monitoring its resistance. Microbeam irradiation with 800 keV Si ions revealed multiple sensitive regions along the edges of the bottom electrode. The rest of the active device area was found to be insensitive to the ion beam. Nanoimplanter irradiation with 200 keV Si ions demonstrated the ability to more accurately map the size of a sensitive area with a beam spot size of 40 nm by 40 nm. Isolated single spot sensitive regions and a larger sensitive region that extends approximately 300 nm were observed.

More Details

Detection and characterization of multi-filament evolution during resistive switching

Applied Physics Letters

Mickel, Patrick R.; Lohn, Andrew L.; Marinella, Matthew J.

We report resistive switching data in TaOx memristors displaying signatures of multi-filament switching modes and present a technique which enables the characterization of the evolution of multiple filaments within a single device during switching, including their temperature, heat flow, conductivity, and time evolving areas. Using a geometrically defined equivalent circuit, we resolve the individual current/voltage values of each filament and demonstrate that the switching curves of each filament collapse onto a common curve determined by the analytical steady-state resistive switching solution for filamentary switching. Finally, we discuss operational modes which may limit the formation of additional conducting filaments, potentially leading to increased device endurance. © 2014 AIP Publishing LLC.

More Details

Rutherford forward scattering and elastic recoil detection (RFSERD) as a method for characterizing ultra-thin films

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Lohn, Andrew L.; Doyle, Barney L.; Mickel, Patrick R.; Stevens, James E.; Marinella, Matthew J.

We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5-50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. The technique is applied to tantalum oxide memristors but can be extended to a wide range of materials systems. © 2014 Published by Elsevier B.V.

More Details

Development, characterization, and modeling of a TaOx ReRAM for a neuromorphic accelerator

ECS Transactions

Marinella, Matthew J.; Mickel, Patrick R.; Lohn, Andrew L.; Hughart, David R.; Bondi, Robert J.; Mamaluy, Denis M.; Hjalmarson, Harold P.; Stevens, James E.; Decker, Seth D.; Apodaca, Roger A.; Evans, Brian R.; Aimone, James B.; Rothganger, Fredrick R.; James, Conrad D.; DeBenedictis, Erik

Resistive random access memory (ReRAM), or memristors, may be capable of significantly improve the efficiency of neuromorphic computing, when used as a central component of an analog hardware accelerator. However, the significant electrical variation within a device and between devices degrades the maximum efficiency and accuracy which can be achieved by a ReRAMbased neuromorphic accelerator. In this report, the electrical variability is characterized, with a particular focus on that which is due to fundamental, intrinsic factors. Analytical and ab initio models are presented which offer some insight into the factors responsible for this variability.

More Details

Development, characterization, and modeling of a TaOx ReRAM for a neuromorphic accelerator

ECS Transactions

Marinella, Matthew J.; Mickel, Patrick R.; Lohn, Andrew L.; Hughart, David R.; Bondi, Robert J.; Mamaluy, Denis M.; Hjalmarson, Harold P.; Stevens, James E.; Decker, Seth D.; Apodaca, Roger A.; Evans, Brian R.; Aimone, James B.; Rothganger, Fredrick R.; James, Conrad D.; DeBenedictis, Erik

Resistive random access memory (ReRAM), or memristors, may be capable of significantly improve the efficiency of neuromorphic computing, when used as a central component of an analog hardware accelerator. However, the significant electrical variation within a device and between devices degrades the maximum efficiency and accuracy which can be achieved by a ReRAMbased neuromorphic accelerator. In this report, the electrical variability is characterized, with a particular focus on that which is due to fundamental, intrinsic factors. Analytical and ab initio models are presented which offer some insight into the factors responsible for this variability.

More Details

A comprehensive approach to decipher biological computation to achieve next generation high-performance exascale computing

Howell, Jamie D.; Lohn, Andrew L.; Marinella, Matthew J.; Baca, Michael J.; Finnegan, Patrick S.; Wolfley, Steven L.; Dagel, Daryl D.; Spahn, Olga B.; Harper, Jason C.; Pohl, Kenneth R.; Mickel, Patrick R.

The human brain (volume=1200cm3) consumes 20W and is capable of performing > 10^16 operations/s. Current supercomputer technology has reached 1015 operations/s, yet it requires 1500m^3 and 3MW, giving the brain a 10^12 advantage in operations/s/W/cm^3. Thus, to reach exascale computation, two achievements are required: 1) improved understanding of computation in biological tissue, and 2) a paradigm shift towards neuromorphic computing where hardware circuits mimic properties of neural tissue. To address 1), we will interrogate corticostriatal networks in mouse brain tissue slices, specifically with regard to their frequency filtering capabilities as a function of input stimulus. To address 2), we will instantiate biological computing characteristics such as multi-bit storage into hardware devices with future computational and memory applications. Resistive memory devices will be modeled, designed, and fabricated in the MESA facility in consultation with our internal and external collaborators.

More Details

Optimizing TaOx memristor performance and consistency within the reactive sputtering "forbidden region"

Applied Physics Letters

Lohn, Andrew L.; Stevens, James E.; Mickel, Patrick R.; Marinella, Matthew J.

Standard deposition processes for depositing ReRAM oxides utilize mass flow of reactive gas to control stoichiometry and have difficulty depositing a precisely defined sub-stoichiometry within a "forbidden region" where film properties are discontinuous with mass flow. We show that by maintaining partial pressure within this discontinuous "forbidden region," instead of by maintaining mass flow, we can optimize tantalum oxide device properties and reduce or eliminate the electroforming step. We also show that defining the partial pressure set point as a fraction of the "forbidden region" instead of as an absolute value can be used to improve wafer-to-wafer consistency with minimal recalibration efforts. © 2013 AIP Publishing LLC.

More Details
Results 1–25 of 34
Results 1–25 of 34