Publications

11 Results

Search results

Jump to search filters

Multiscale modeling for fluid transport in nanosystems

Jones, Reese E.; Lee, Jonathan L.; Zimmerman, Jonathan A.

Atomistic-scale behavior drives performance in many micro- and nano-fluidic systems, such as mircrofludic mixers and electrical energy storage devices. Bringing this information into the traditionally continuum models used for engineering analysis has proved challenging. This work describes one such approach to address this issue by developing atomistic-to-continuum multi scale and multi physics methods to enable molecular dynamics (MD) representations of atoms to incorporated into continuum simulations. Coupling is achieved by imposing constraints based on fluxes of conserved quantities between the two regions described by one of these models. The impact of electric fields and surface charges are also critical, hence, methodologies to extend finite-element (FE) MD electric field solvers have been derived to account for these effects. Finally, the continuum description can have inconsistencies with the coarse-grained MD dynamics, so FE equations based on MD statistics were derived to facilitate the multi scale coupling. Examples are shown relevant to nanofluidic systems, such as pore flow, Couette flow, and electric double layer.

More Details

Polarization as a field variable from molecular dynamics simulations

Journal of Chemical Physics

Mandadapu, Kranthi K.; Templeton, Jeremy A.; Lee, Jonathan L.

A theoretical and computational framework for systematically calculating the macroscopic polarization density as a field variable from molecular dynamics simulations is presented. This is done by extending the celebrated Irving and Kirkwood [J. Chem. Phys. 18, 817 (1950)10.1063/1.1747782] procedure, which expresses macroscopic stresses and heat fluxes in terms of the atomic variables, to the case of electrostatics. The resultant macroscopic polarization density contains molecular dipole, quadrupole, and higher-order moments, and can be calculated to a desired accuracy depending on the degree of the coarse-graining function used to connect the molecular and continuum scales. The theoretical and computational framework is verified by recovering the dielectric constant of bulk water. Finally, the theory is applied to calculate the spatial variation of the polarization vector in the electrical double layer of a 1:1 electrolyte solution. Here, an intermediate asymptotic length scale is revealed in a specific region, which validates the application of mean field Poisson-Boltzmann theory to describe this region. Also, using the existence of this asymptotic length scale, the lengths of the diffuse and condensed/Stern layers are identified accurately, demonstrating that this framework may be used to characterize electrical double layers over a wide range of concentrations of solutions and surface charges. © 2013 AIP Publishing LLC.

More Details
11 Results
11 Results