This article characterises the effects of cathode photoemission leading to electrical discharges in an argon gas. We perform breakdown experiments under pulsed laser illumination of a flat cathode and observe Townsend to glow discharge transitions. The breakdown process is recorded by high-speed imaging, and time-dependent voltage and current across the electrode gap are measured for different reduced electric fields and laser intensities. We employ a 0D transient discharge model to interpret the experimental measurements. The fitted values of transferred photoelectron charge are compared with calculations from a quantum model of photoemission. The breakdown voltage is found to be lower with photoemission than without. When the applied voltage is insufficient for ion-induced secondary electron emission to sustain the plasma, laser driven photoemission can still create a breakdown where a sheath (i.e. a region near the electrode surfaces consisting of positive ions and neutrals) is formed. This photoemission induced plasma persists and decays on a much longer time scale ( ∼ 10 s μ s) than the laser pulse length ( 30 ps). The effects of different applied voltages and laser energies on the breakdown voltage and current waveforms are investigated. The discharge model can accurately predict the measured breakdown voltage curves, despite the existence of discrepancy in quantitatively describing the transient discharge current and voltage waveforms.
Redox flow batteries (RFBs) that incorporate solid energy-storing materials are attractive for high-capacity grid-scale energy storage due to their markedly higher theoretical energy densities compared to their fully liquid counterparts. However, this promise of higher energy density comes at the expense of rate capability. In this work we exploit a ZnO nanorod-decorated Ni foam scaffold to create a high surface area Li metal anode capable of rates up to 10 mA cm−2, a 10× improvement over traditional planar designs. The ZnO nanorods enhance Li metal wettability and promote uniform Li nucleation, allowing the RFB to be initially operated with a prelithiated (charged) anode, or with a safety-conscious, Li-less, fully discharged anode. 5 mgS cm−1 were cycled using a mediated S cathode, whereby redox mediators help oxidize and reduce solid S particles. At 2.4 mgS cm−2 and 10 mA cm−2, the RFB becomes limited by the mediation of solid S. Nevertheless, a respectable energy density of 20.3 Wh L−1 is demonstrated, allowing considerable increase if the S mediation rate can be further improved. Lessons learned here may be broadly applied to RFBs with alkali metal anodes, offering an avenue for safe, dense, grid-scale energy storage.
We report a spontaneous and hierarchical self-assembly mechanism of carbon dots prepared from citric acid and urea into nanowire structures with large aspect ratios (>50). Scattering-type scanning near-field optical microscopy (s-SNOM) with broadly tunable mid-IR excitation was used to interrogate details of the self-assembly process by generating nanoscopic chemical maps of local wire morphology and composition. s-SNOM images capture the evolution of wire formation and the complex interplay between different chemical constituents directing assembly over the nano- to microscopic length scales. We propose that residual citrate promotes tautomerization of melamine surface functionalities to produce supramolecular shape synthons comprised of melamine-cyanurate adducts capable of forming long-range and highly directional hydrogen-bonding networks. This intrinsic, heterogeneity-driven self-assembly mechanism reflects synergistic combinations of high chemical specificity and long-range cooperativity that may be harnessed to reproducibly fabricate functional structures on arbitrary surfaces.
A series of MD and DFT simulations were performed to investigate hydrogen self-clustering and retention in tungsten. Using a newly develop machine learned interatomic potential, spontaneous formation of hydrogen platelets was observed after implanting low-energy hydrogen into tungsten at high fluxes and temperatures. The platelets formed along low miller index orientations and neighboring tetrahedral and octahedral sites and could grow to over 50 atoms in size. High temperatures above 600 K and high hydrogen concentrations were needed to observe significant platelet formation. A critical platelet size of six hydrogen atoms was needed for long term stability. Platelets smaller than this were found to be thermally unstable within a few nanoseconds. To verify these observations, characteristic platelets from the MD simulations were simulated using large-scale DFT. DFT corroborated the MD results in that large platelets were also found to be dynamically stable for five or more hydrogen atoms. The LDOS from the DFT simulated platelets indicated that hydrogen atoms, particularly at the periphery of the platelet, were found to be at least as stable as hydrogen atoms in bulk tungsten. In addition, electrons were found to be localized around hydrogen atoms in the platelet itself and that hydrogen atoms up to 4.2 Å away within the platelet were found to share charge suggesting that the hydrogen atoms are interacting across longer distances than previously suggested. These results reveal a self-clustering mechanisms for hydrogen within tungsten in the absence of radiation induced or microstructural defects that could be a precursor to blistering and potentially explain the experimentally observed high hydrogen retention particularly in the near surface region.
The purpose of this proposal is to design a new integral critical experiment to investigate the effects of beryllium oxide and high assay low-enriched uranium fuels. this proposal considers using several existing resources at Sandia: (1) the Critical Experiments (SCX) facility and water tank, (2) spare UO2-BeO fuel for the Annular Core Research Reactor (ACRR), and 7uPCX fuel rods from previous benchmark experiments.
Tritium exhibits unique environmental behavior because of its potential interactions with water and organic substances. Modeling the environmental consequences of tritium releases can be relatively complex and thus an evaluation of MACCS is needed to understand what updates, if any, are needed in MACCS to account for the behavior of tritium. We examine documented tritium releases and previous benchmarking assessments to perform a model intercomparison between MACCS and state-of-practice tritium-specific codes UFOTRI and ETMOD to quantify the difference between MACCS and state of practice models for assessing tritium consequences. Additionally, information to assist an analyst in judging whether a postulated tritium release is likely to lead to significant doses is provided.
Organic co-crystals have emerged as a promising class of semiconductors for next-generation optoelectronic devices due to their unique photophysical properties. This paper presents a joint experimental-theoretical study comparing the crystal structure, spectroscopy, and electronic structure of two charge transfer co-crystals. Reported herein is a novel co-crystal Npe:TCNQ, formed from 4-(1-naphthylvinyl)pyridine (Npe) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) via molecular self-assembly. This work also presents a revised study of the co-crystal composed of Npe and 1,2,4,5-tetracyanobenzene (TCNB) molecules, Npe:TCNB, herein reported with a higher-symmetry (monoclinic) crystal structure than previously published. Npe:TCNB and Npe:TCNQ dimer clusters are used as theoretical model systems for the co-crystals; the geometries of the dimers are compared to geometries of the extended solids, which are computed with periodic boundary conditions density functional theory. UV-Vis absorption spectra of the dimers are computed with time-dependent density functional theory and compared to experimental UV-Vis diffuse reflectance spectra. Both Npe:TCNB and Npe:TCNQ are found to exhibit neutral character in the S0 state and ionic character in the S1 state. The high degree of charge transfer in the S1 state of both Npe:TCNB and Npe:TCNQ is rationalized by analyzing the changes in orbital localization associated with the S1 transitions.
The purpose of this report is to document updates on the apparatus to simulate commercial vacuum drying procedures at the Nuclear Energy Work Complex at Sandia National Laboratories. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system during subsequent storage and disposal. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates well-designed investigations of drying process efficacy and water retention. Scaled tests that incorporate relevant physics and well-controlled boundary conditions are essential to provide insight and guidance to the simulation of prototypic systems undergoing drying processes. This report documents fiscal year 2023 (FY23) updates on the Advanced Drying Cycle Simulator (ADCS). This apparatus was built to simulate commercial drying procedures and quantify the amount of residual water remaining in a pressurized water reactor (PWR) fuel assembly after drying. The ADCS was constructed with a prototypic 17×17 PWR fuel skeleton and waterproof heater rods to simulate decay heat. These waterproof heaters are the next generation design to heater rods developed and tested at Sandia National Laboratories in FY20. In FY23, a series of four simulated commercial drying tests was completed. This report presents the temperature and pressure histories of the drying tests as well as axial temperature profiles that can be compared to data from the Electric Power Research Institute (EPRI) High Burnup Demonstration TN-32B cask. Water content measurements and dew point calculations from a Hiden Analytical HPR-30 mass spectrometer are also presented in this report. Due to familiarization with this first-of-a-kind system, refinements to equipment calibration and test procedures have been identified to better match commercial drying cycles for future simulated tests. However, the presented data demonstrate the successful construction and operation of a viable research platform for quantifying residual water content closely approaching that expected in dry storage canisters during commercial drying procedures.
Microneedle sensors could enable minimally-invasive, continuous molecular monitoring – informing on disease status and treatment in real-time. Wearable sensors for pharmaceuticals, for example, would create opportunities for treatments personalized to individual pharmacokinetics. Here, we demonstrate a commercial-off-the-shelf (COTS) approach for microneedle sensing using an electrochemical aptamer-based sensor that detects the high-toxicity antibiotic, vancomycin. Wearable monitoring of vancomycin could improve patient care by allowing targeted drug dosing within its narrow clinical window of safety and efficacy. To produce sensors, we miniaturize the electrochemical aptamer-based sensors to a microelectrode format, and embed them within stainless steel microneedles (sourced from commercial insulin pen needles). The microneedle sensors achieve quantitative measurements in body-temperature undiluted blood. Further, the sensors effectively maintain electrochemical signal within porcine skin. This COTS approach requires no cleanroom fabrication or specialized equipment, and produces individually-addressable, sterilizable microneedle sensors capable of easily penetrating the skin. In the future, this approach could be adapted for multiplexed detection, enabling real-time monitoring of a range of biomarkers.
This paper describes a process for forming a buried field shield in GaN by an etch-and-regrowth process, which is intended to protect the gate dielectric from high fields in the blocking state. GaN trench MOSFETs made at Sandia serve as the baseline to show the limitations in making a trench gated device without a method to protect the gate dielectric. Device data coupled with simulations show device failure at 30% of theoretical breakdown for devices made without a field shield. Implementation of a field shield reduces the simulated electric field in the dielectric to below 4 MV/cm at breakdown, which eliminates the requirement to derate the device in order to protect the dielectric. For realistic lithography tolerances, however, a shield-to-channel distance of 0.4 μm limits the field in the gate dielectric to 5 MV/cm and requires a small margin of device derating to safeguard a long-term reliability and lifetime of the dielectric.
The carbon phase diagram is rich with polymorphs which possess very different physical and optical properties ideal for different scientific and engineering applications. An understanding of the dynamically driven phase transitions in carbon is particularly important for applications in inertial confinement fusion, as well as planetary and meteorite impact histories. Experiments on the Z Pulsed Power Facility at Sandia National Laboratories generate dynamically compressed high-pressure states of matter with exceptional uniformity, duration, and size that are ideal for investigations of fundamental material properties. X-ray diffraction (XRD) is an important material physics measurement because it enables direct observation of the strain and compression of the crystal lattice, and it enables the detection and identification of phase transitions. Several unique challenges of dynamic compression experiments on Z prevent using XRD systems typically utilized at other dynamic compression facilities, so novel XRD diagnostics have been designed and implemented. We performed experiments on Z to shock compress carbon (pyrolytic graphite) samples to pressures of 150–320 GPa. The Z-Beamlet Laser generated Mn-Heα (6.2 keV) X-rays to probe the shock-compressed carbon sample, and the new XRD diagnostics measured changes in the diffraction pattern as the carbon transformed into its high-pressure phases. Quantitative analysis of the dynamic XRD patterns in combination with continuum velocimetry information constrained the stability fields and melting of high-pressure carbon polymorphs.
Crystal plasticity finite element model (CPFEM) is a powerful numerical simulation in the integrated computational materials engineering toolboxes that relates microstructures to homogenized materials properties and establishes the structure–property linkages in computational materials science. However, to establish the predictive capability, one needs to calibrate the underlying constitutive model, verify the solution and validate the model prediction against experimental data. Bayesian optimization (BO) has stood out as a gradient-free efficient global optimization algorithm that is capable of calibrating constitutive models for CPFEM. In this paper, we apply a recently developed asynchronous parallel constrained BO algorithm to calibrate phenomenological constitutive models for stainless steel 304 L, Tantalum, and Cantor high-entropy alloy.
This project applies methods in Bayesian inference and modern statistical methods to quantify the value of new experimental data, in the form of new or modified diagnostic configurations and/or experiment designs. We demonstrate experiment design methods that can be used to identify the highest priority diagnostic improvements or experimental data to obtain in order to reduce uncertainties on critical inferred experimental quantities and select the best course of action to distinguish between competing physical models. Bayesian statistics and information theory provide the foundation for developing the necessary metrics, using two high impact experimental platforms on Z as exemplars to develop and illustrate the technique. We emphasize that the general methodology is extensible to new diagnostics (provided synthetic models are available), as well as additional platforms. We also discuss initial scoping of additional applications that began development in the last year of this LDRD.
Chemically robust, low-power sensors are needed for the direct electrical detection of toxic gases. Metal-organic frameworks (MOFs) offer exceptional chemical and structural tunability to meet this challenge, though further understanding is needed regarding how coadsorbed gases influence or interfere with the electrical response. To probe the influence of competitive gases on trace NO2 detection in a simulated flue gas stream, a combined structure-property study integrating synchrotron powder diffraction and pair distribution function analyses was undertaken, to elucidate how structural changes associated with gas binding inside Ni-MOF-74 pores correlate with the electrical response from Ni-MOF-74-based sensors. Data were evaluated for 16 gas combinations of N2, NO2, SO2, CO2, and H2O at 50 °C. Fourier difference maps from a rigid-body Rietveld analysis showed that additional electron density localized around the Ni-MOF-74 lattice correlated with large decreases in Ni-MOF-74 film resistance of up to a factor of 6 × 103, observed only when NO2 was present. These changes in resistance were significantly amplified by the presence of competing gases, except for CO2. Without NO2, H2O rapidly (<120 s) produced small (1-3×) decreases in resistance, though this effect could be differentiated from the slower adsorption of NO2 by the evaluation of the MOF’s capacitance. Furthermore, samples exposed to H2O displayed a significant shift in lattice parameters toward a larger lattice and more diffuse charge density in the MOF pore. Evaluating the Ni-MOF-74 impedance in real time, NO2 adsorption was associated with two electrically distinct processes, the faster of which was inhibited by competitive adsorption of CO2. Together, this work points to the unique interaction of NO2 and other specific gases (e.g., H2O, SO2) with the MOF’s surface, leading to orders of magnitude decrease in MOF resistance and enhanced NO2 detection. Understanding and leveraging these coadsorbed gases will further improve the gas detection properties of MOF materials.
This work shows that the static random access memory (SRAM) error rate for a commercial 65-nm device in a dose rate environment can be highly dependent upon the integrated dose (dose rate × pulse duration). While the typical metric for such testing is dose rate upset (DRU) level in rad(Si)/s, a series of dose rate experiments at Little Mountain Test Facility (LMTF) shows dependence on the integrated dose. The error rate is also found to be dependent on the core voltage, and the preradiation value of the bits. We believe that these effects are explained by a well charge depletion caused by gamma ray photocurrent.