Publications

Results 1–25 of 44

Search results

Jump to search filters

NIR Ring Mirror Laser Utilizing Low Loss Silicon Nitride Photonic Platform

CLEO: Fundamental Science, CLEO:FS 2023

Starbuck, Andrew L.; Trotter, Douglas C.; Dallo, Christina M.; Martinez, William M.; Chow, Weng W.; Skogen, Erik J.; Gehl, M.

Low loss silicon nitride ring resonator reflectors provide feedback to a III/V gain chip, achieving single-mode lasing at 772nm. The Si3N4 is fabricated in a CMOS foundry compatible process that achieves loss values of 0.036dB/cm.

More Details

Edge-Illuminated Monochromatic Photovoltaic Array for Galvanically-Isolated Power-Over-Fiber

2022 IEEE Research and Applications of Photonics in Defense Conference, RAPID 2022 - Proceedings

Fortuna, S.A.; Skogen, Erik J.; Choi, Junoh C.; Kaehr, Bryan J.; Pomerene, Andrew P.; Alford, Charles A.; Mondragon, Joshua

We used a micro-fabricated fused silica light guide plate to uniformly illuminate a GaAs photovoltaic array with a fiber-coupled 808 nm laser. Greater than 1 Watt of galvanically-isolated electrical power was generated from this compact edge-illuminated monochromatic photovoltaic module.

More Details

High-Brightness Ultraviolet Lasers for Leap-Ahead National Security Applications

Skogen, Erik J.; Fortuna, S.A.; Allerman, A.A.; Smith, Michael; Alford, Charles A.; Crawford, Mary H.

In this project we endeavored to improve the state-of-the-art in UV lasers diodes. We made important advancements in several fronts from modeling, to epitaxial growth, to fabrication, and testing. Throughout the project it became clear that polarization doping would be able to help advance the state of laser diode design in terms of electrical performance, but the optical design would need to be investigated to ensure that a 2D guided mode would be supported. New capability in optical modeling using commercial software demonstrated that the new polarization doped structures would be viable. New capability in pulsed testing was established to reach the current and voltage required. Our fabricated devices had some parasitic electrical paths which hindered performance that we were ultimately unable to overcome in the project timeframe. We do believe that future projects will be able to leverage the advancements made under this project.

More Details

Heterogeneous Integration of Silicon Electronics and Compound Semiconductor Optoelectronics for Miniature RF Photonic Transceivers

Nordquist, Christopher N.; Skogen, Erik J.; Fortuna, S.A.; Hollowell, Andrew E.; Hemmady, Caroline S.; Laros, James H.; Forbes, T.; Wood, Michael G.; Jordan, Matthew J.; Dallo, Henry J.; McClain, Jaime L.; Lepkowski, Stefan M.; Alford, Charles A.; Peake, Gregory M.; Pomerene, Andrew P.; Long, Christopher J.; Serkland, Darwin K.; Dean, Kenneth A.

Abstract not provided.

A COLD ATOM INTERFEROMETRY SENSOR PLATFORM BASED ON DIFFRACTIVE OPTICS AND INTEGRATED PHOTONICS

Lee, Jongmin L.; McGuinness, Hayden J.; Soh, Daniel B.; Christensen, Justin C.; Ding, Roger D.; Finnegan, Patrick S.; Hoth, Gregory W.; Kindel, William K.; Little, Bethany J.; Rosenthal, Randy R.; Wendt, Joel R.; Lentine, Anthony L.; Eichenfield, Matthew S.; Gehl, M.; Kodigala, Ashok; Siddiqui, Aleem M.; Skogen, Erik J.; Vawter, Gregory A.; Ison, Aaron M.; Bossert, David B.; Fuerschbach, Kyle H.; Gillund, Daniel P.; Walker, Charles A.; De Smet, Dennis J.; Brashar, Connor B.; Berg, Joseph B.; Jhaveri, Prabodh M.; Smith, Tony G.; Kemme, S.A.; Schwindt, Peter S.; Biedermann, Grant

Abstract not provided.

Heterogeneous integration of silicon electronics and compound semiconductor optoelectronics for miniature rf photonic transceivers

ECS Transactions

Nordquist, Christopher N.; Skogen, Erik J.; Fortuna, S.A.; Hollowell, Andrew E.; Hemmady, Caroline S.; Laros, James H.; Forbes, T.; Wood, Michael G.; Jordan, Matthew J.; McClain, Jaime L.; Lepkowski, Stefan M.; Alford, Charles A.; Peake, Gregory M.; Pomerene, Andrew P.; Long, Christopher M.; Serkland, Darwin K.; Dean, Kenneth A.

Heterogeneous Integration (HI) may enable optoelectronic transceivers for short-range and long-range radio frequency (RF) photonic interconnect using wavelength-division multiplexing (WDM) to aggregate signals, provide galvanic isolation, and reduce crosstalk and interference. Integration of silicon Complementary Metal-Oxide-Semiconductor (CMOS) electronics with InGaAsP compound semiconductor photonics provides the potential for high-performance microsystems that combine complex electronic functions with optoelectronic capabilities from rich bandgap engineering opportunities, and intimate integration allows short interconnects for lower power and latency. The dominant pure-play foundry model plus the differences in materials and processes between these technologies dictate separate fabrication of the devices followed by integration of individual die, presenting unique challenges in die preparation, metallization, and bumping, especially as interconnect densities increase. In this paper, we describe progress towards realizing an S-band WDM RF photonic link combining 180 nm silicon CMOS electronics with InGaAsP integrated optoelectronics, using HI processes and approaches that scale into microwave and millimeter-wave frequencies.

More Details

DEPLOYABLE COLD ATOM INTERFEROMETRY SENSOR PLATFORMS BASED ON DIFFRACTIVE OPTICS AND INTEGRATED PHOTONICS

Lee, Jongmin L.; Biedermann, Grant; McGuinness, Hayden J.; Soh, Daniel B.; Christensen, Justin C.; Ding, Roger D.; Finnegan, Patrick S.; Hoth, Gregory A.; Kindel, Will; Little, Bethany J.; Rosenthal, Randy R.; Wendt, J.R.; Lentine, Anthony L.; Eichenfield, Matthew S.; Gehl, M.; Kodigala, Ashok; Siddiqui, Aleem M.; Skogen, Erik J.; Vawter, Gregory A.; Ison, Aaron M.; Bossert, David B.; Fuerschbach, Kyle H.; Gillund, Daniel P.; Walker, Charles A.; De Smet, Dennis J.; Brashar, Connor B.; Berg, Joseph B.; Jhaveri, Prabodh M.; Smith, Tony G.; Kemme, S.A.; Schwindt, Peter S.

Abstract not provided.

Compound Semiconductor Integrated Photonics for Avionics

Tauke-Pedretti, Anna; Vawter, Gregory A.; Skogen, Erik J.; Alford, Charles A.; Cajas, Florante G.; Overberg, Mark E.; Peake, Gregory M.; Wendt, J.R.; Chow, Weng W.; Lentine, Anthony L.; Nelson, Jeffrey S.; Sweatt, W.C.; Jared, Bradley H.; Resnick, Paul J.; Sanchez, Carlos A.; Pipkin, Jennifer R.; Girard, Gerald R.; Nielson, Greg; Cruz-Campa, Jose L.; Okandan, Murat

Abstract not provided.

Wavelength Conversion Arrays for Optical and X-Ray Diagnostics at Z

Skogen, Erik J.; Laros, James H.; Vawter, Gregory A.; Tauke-Pedretti, Anna; Peake, Gregory M.; Alford, Charles A.; Cajas, Florante G.

Optical diagnostics play a central role in dynamic compression research. Currently, streak cameras are employed to record temporal and spectroscopic information in single-event experiments, yet are limited in several ways; the tradeoff between time resolution and total record duration is one such limitation. This project solves the limitations that streak cameras impose on dynamic compression experiments while reducing both cost and risk (equipment and labor) by utilizing standard high-speed digitizers and commercial telecommunications equipment. The missing link is the capability to convert the set of experimental (visible/x-ray) wavelengths to the infrared wavelengths used in telecommunications. In this report, we describe the problem we are solving, our approach, our results, and describe the system that was delivered to the customer. The system consists of an 8-channel visible-to-infrared converter with > 2 GHz 3-dB bandwidth.

More Details

Selective layer disordering in intersubband Al0.028Ga0.972N/AlN superlattices with silicon nitride capping layer

Applied Physics Express

Wierer, Jonathan J.; Allerman, A.A.; Skogen, Erik J.; Tauke-Pedretti, Anna; Vawter, Gregory A.; Montano, Ines M.

Selective layer disordering in an intersubband Al0.028Ga0.972N/AlN superlattice using a silicon nitride (SiNx) capping layer is demonstrated. The SiNx capped superlattice exhibits suppressed layer disordering under high-temperature annealing. Additionally, the rate of layer disordering is reduced with increased SiNx thickness. The layer disordering is caused by Si diffusion, and the SiNx layer inhibits vacancy formation at the crystal surface and ultimately, the movement of Al and Ga atoms across the heterointerfaces. Patterning of the SiNx layer results in selective layer disordering, an attractive method to integrate active and passive III-nitride-based intersubband devices.

More Details

Photonic integration at sandia national laboratories

Integrated Photonics Research, Silicon and Nanophotonics, IPRSN 2015

Tauke-Pedretti, Anna; Vawter, Gregory A.; Skogen, Erik J.; Alford, Charles A.; Peake, Gregory M.; Overberg, Mark E.; Cajas, Florante G.

This talk will discuss recent work on photonic integration for applications in optical signal processing, digital logic, and fundamental device research with an emphasis on InP-based photonic integrated circuit technology. © 2015 OSA.

More Details
Results 1–25 of 44
Results 1–25 of 44