Enhancing Graphene Plasmonic Device Performance via its Dielectric Environment
Abstract not provided.
Abstract not provided.
Physical Review Applied
Graphene plasmons provide a compelling avenue toward chip-scale dynamic tuning of infrared light. Dynamic tunability emerges through controlled alterations in the optical properties of the system defining graphene's plasmonic dispersion. Typically, electrostatic induced alterations of the carrier concentration in graphene working in conjunction with mobility have been considered the primary factors dictating plasmonic tunability. We find here that the surrounding dielectric environment also plays a primary role, dictating not just the energy of the graphene plasmon but so too the magnitude of its tuning and spectral width. To arrive at this conclusion, poles in the imaginary component of the reflection coefficient are used to efficiently survey the effect of the surrounding dielectric on the tuning of the graphene plasmon. By investigating several common polar materials, optical phonons (i.e., the Reststrahlen band) of the dielectric substrate are shown to appreciably affect not only the plasmon's spectral location but its tunability, and its resonance shape as well. In particular, tunability is maximized when the resonances are spectrally distant from the Reststrahlen band, whereas sharp resonances (i.e., high-Q) are achievable at the band's edge. These observations both underscore the necessity of viewing the dielectric environment in aggregate when considering the plasmonic response derived from two-dimensional materials and provide heuristics to design dynamically tunable graphene-based infrared devices.
Annual Review of Heat Transfer
This paper presents an in-depth review of ongoing experimental research efforts to fundamentally understand the strong near-field enhancement of radiative heat transfer and make use of the underlying physics for various novel applications. Compared to theoretical studies on near-field radiative heat transfer (NFRHT), its experimental demonstration has not been explored as much until recently due to technical challenges in precision gap control and heat transfer measurement. However, recent advances in micro-/nanofabrication and nanoscale instrumentation/control techniques as well as unprecedented growth in materials science and engineering have created remarkable opportunities to overcome the existing challenges in the measurement and engineering of NFRHT. Beginning with the pioneering works in 1960s, this paper tracks the past and current experimental efforts of NFRHT in three different configurations (i.e., sphere-plane, plane-plane, and tip-plane). In addition, future remarks on how to address current challenges in the experimental research of NFRHT are briefly discussed.
Abstract not provided.