Publications

Results 7201–7250 of 99,299

Search results

Jump to search filters

Uncertainty in Annual Energy Resulting from Uncertain Irradiance Measurements

Hansen, Clifford; Scheiner, Aaron

We report an analysis quantifying the contribution to uncertainty in annual energy projections from uncertainty in ground-measured irradiance. Uncertainty in measured irradiance is quantified for eight instruments by the difference from a well maintained, secondary standard pyranometer which is regarded as truthful. We construct a statistical model of irradiance uncertainty and apply the model to generate a sample of 100 annual time series of irradiance for each instrument. The sample is propagated through a common performance model for a reference photovoltaic system to quantify variation in annual energy. Although the measured irradiance varies from the reference by a few percent (standard deviation of 1-2%) the uncertainty in annual energy is on the order of a fraction of one percent. We propose a model for a factor that represents uncertainty in modeled annual energy that arises from uncertainty in ground-measured irradiance.

More Details

A study of sacrificial mirrors for use prior to a laser wakefield accelerator driven by the Z-Petawatt laser

Galloway, Benjamin R.; Rambo, Patrick K.; Geissel, Matthias; Kimmel, Mark; Kellogg, Jeffrey; Elle, Jennifer; Garrett, Travis; Porter, John L.; Rochau, G.A.

Many experiments at Sandia’s Z Pulsed Power Facility require x-ray backlighting diagnostics to understand experiment performance. Due to limitations in present-day source/detection modalities, most x-ray diagnostics at Z are restricted to photon energies <20 keV, ultimately limiting the density, amount, and atomic number of targets diagnosable in experiments. These limitations force the use of low-Z materials like Beryllium, and they prevent acquisition of important backlighting data for materials/densities that are opaque to soft x-rays and where background emission from the Z load and transmission lines overwhelm diagnostics. In this LDRD project, we have investigated the design and development of a laser wakefield acceleration platform driven by the Z-Petawatt laser – a platform that would enable the generation of a pulsed, collimated beam of high energy x-rays up to 100 keV. Geometrical considerations for implementation on the Z Machine require the use of sacrificial mirrors, which have been tested in offline experiments in the Chama target chamber in building 983. Our results suggest the use of sacrificial mirrors would not necessarily inhibit the laser wakefield x-ray process, particularly with the benefits stemming from planned laser upgrades. These conclusions support the continuation of laser wakefield source research and the development of the necessary infrastructure to deliver the Z-Petawatt laser to the Z center section along the appropriate lines of sight. Ultimately, this new capability will provide unprecedented views through dense states of matter, enabling the use of previously incompatible target materials/designs, and uncovering a new set of observables accessible through diffraction and spectroscopy in the hard x-ray regime. These will amplify the data return on precious Z shots and enhance Sandia’s ability to investigate fundamental physics in support of national security.

More Details

Model Validation Database for Fires Involving Fuels at Liquefied Natural Gas Facilities

Luketa, Anay

This document provides a description of the model evaluation protocol (MEP) database for fires involving liquefied natural gas (LNG) and processing fuels at LNG facilities. The purpose of the MEP is to provide procedures regarding the assessment of a model's suitability to predict thermal exclusion zones resulting from a fire. The database includes measurements from pool fire, jet fire, and fireball experiments which are provided in a spreadsheet. Users are to enter model results into the spreadsheet which automatically generates statistical performance measures and graphical comparisons with the experimental data. The intent of this document is to provide a description of the experiments and of the procedure required to carry out the validation portion of the MEP. In addition, the statistical performance measures, measurements for comparisons, and parameter variation are provided.

More Details

Infrasound direction of arrival determination using a balloon-borne aeroseismometer

JASA Express Letters

Bowman, Daniel; Rouse, Jerry W.; Krishnamoorthy, Siddharth; Silber, Elizabeth A.

Free-floating balloons are an emerging platform for infrasound recording, but they cannot host arrays sufficiently wide for multi-sensor acoustic direction finding techniques. Because infrasound waves are longitudinal, the balloon motion in response to acoustic loading can be used to determine the signal azimuth. This technique, called “aeroseismometry,” permits sparse balloon-borne networks to geolocate acoustic sources. This is demonstrated by using an aeroseismometer on a stratospheric balloon to measure the direction of arrival of acoustic waves from successive ground chemical explosions. A geolocation algorithm adapted from hydroacoustics is then used to calculate the location of the explosions.

More Details

Model Evaluation Protocol for Fire Models Involving Fuels at Liquefied Natural Gas Facilities

Luketa, Anay

This document provides a description of the model evaluation protocol (MEP) for pool fires, jet fires, and fireballs involving liquefied natural gas (LNG), refrigerant fluids, and byproducts at LNG facilities. The purpose of the MEP is to provide procedures regarding the assessment of a model's suitability to predict heat flux from fires. Three components, namely, a scientific assessment, model verification, and model validation comprise the MEP. The evaluation of a model satisfying these three components is to be documented in the form of a model evaluation report (MER). Discussion of models for the prediction of fire, detailed information on each of the three MEP components, the MEP procedure regarding new versions of previously approved models, and the format of the model evaluation report (MER) are provided.

More Details

Federated Learning and Differential Privacy: What might AI-Enhanced co-design of microelectronics learn?

Eugenio, Evercita C.

Data is a valuable commodity, and it is often dispersed over multiple entities. Sharing data or models created from the data is not simple due to concerns regarding security, privacy, ownership, and model inversion. This limitation in sharing can hinder model training and development. Federated learning can enable data or model sharing across multiple entities that control local data without having to share or exchange the data themselves. Differential privacy is a conceptual framework that brings strong mathematical guarantee for privacy protection and helps provide a quantifiable privacy guarantee to any data or models shared. The concepts of federated learning and differential privacy are introduced along with possible connections. Lastly, some open discussion topics on how federated learning and differential privacy can tied to AI-Enhanced co-design of microelectronics are highlighted.

More Details

Surrogate modeling for efficiently, accurately and conservatively estimating measures of risk

Reliability Engineering and System Safety

Jakeman, John D.; Kouri, Drew P.; Huerta, Jose G.

We present a surrogate modeling framework for conservatively estimating measures of risk from limited realizations of an expensive physical experiment or computational simulation. Risk measures combine objective probabilities with the subjective values of a decision maker to quantify anticipated outcomes. Given a set of samples, we construct a surrogate model that produces estimates of risk measures that are always greater than their empirical approximations obtained from the training data. These surrogate models limit over-confidence in reliability and safety assessments and produce estimates of risk measures that converge much faster to the true value than purely sample-based estimates. We first detail the construction of conservative surrogate models that can be tailored to a stakeholder's risk preferences and then present an approach, based on stochastic orders, for constructing surrogate models that are conservative with respect to families of risk measures. Our surrogate models include biases that permit them to conservatively estimate the target risk measures. We provide theoretical results that show that these biases decay at the same rate as the L2 error in the surrogate model. Numerical demonstrations confirm that risk-adapted surrogate models do indeed overestimate the target risk measures while converging at the expected rate.

More Details

Electrical-Discharge-Machining Contamination Removal from Metal Additively Manufactured Components

Banga, Dhego O.; Chames, Jeffery M.; Yee, Joshua K.; Jankowski, Alan F.

The use of an electrochemical dissolution process is shown to remove the recast layer contamination from the surfaces of electrical-discharge-machining cut components, as well as the interior exposed surfaces of the structure. The solution chemistry, cell potential, and exposure time are all relevant interdependent variables. Optimization of the electrode geometry should be made for each type of component. For the case of Cu-Zn recast contamination of 300-series alloy components, surface composition analysis indicates that complete electrochemical dissolution is achieved using a dilute solution of nitric acid (HNO3). For example, electrochemical dissolution of the Cu-Zn recast is accomplished at 1.2 V cell potential using a 20% nitric solution and an exposure time of 4 h. The use of a nitric acid bath was specifically chosen since it’s chemically compatible and will not degrade the host alloy or the component. In sum, an electrochemically driven dissolution process can be tailored to remove of the recast contamination without affecting the integrity of the host component structure and its dimensional tolerances.

More Details

Available Drawdowns for Each Oil Storage Cavern in the Strategic Petroleum Reserve (2022 Annual Report)

Hart, David; Zeitler, Todd Z.; Sobolik, Steven

The Department of Energy maintains an up-to-date documentation of the number of available full drawdowns of each of the caverns owned by the Strategic Petroleum Reserve (SPR). This information is important for assessing the SPR's ability to deliver oil to domestic oil companies expeditiously if national or world events dictate a rapid sale and deployment of the oil reserves. Sandia was directed to develop and implement a process to continuously assess and report the evolution of drawdown capacity, the subject of this report. A cavern has an available drawdown if after that drawdown, the long-term stability of the cavern, the cavern field, or the oil quality are not compromised. Thus, determining the number of a vailable drawdowns requires the consideration of several factors regarding cavern and wellbore integrity and stability, including stress states caused by cavern geometry and operations, salt damage caused by dilatant and tensile stresses, the effect of enhanced creep on wellbore integrity, and the sympathetic stress effect of operations on neighboring caverns. A consensus has now been built regarding the assessment of drawdown capabilities and risks for the SPR caverns (Sobolik et al., 2014; Sobolik 2016). The process involves an initial assessment of the pillar-to-diameter (P/D) ratio for each cavern with respect to neighboring caverns. A large pillar thickness between adjacent caverns should be strong enough to withstand the stresses induced by closure of the caverns due to salt creep. The first evaluation of P/D includes a calculation of the evolution of P/D after a number of full cavern drawdowns. The most common storage industry standard is to keep this value greater than 1.0, which should ensure a pillar thick enough to prevent loss of fluids to the surrounding rock mass. However, many of the SPR caverns currently have a P/D less than 1.0 or will likely have a low P/D after one or two full drawdowns. For these caverns, it is important to examine the s tructural integrity with more detail using geomechanical models. Finite - element geomechanical models have been used to determine the stress states in the pillars following successive drawdowns. By computing the tensile and dilatant stresses in the salt, areas of potential structural instability can be identified that may represent "red flags" for additional drawdowns. These analyses have found that many caverns will maintain structural integrity even when grown via drawdowns to dimensions resulting in a P/D of less than 1.0. The analyses have also confirmed that certain caverns should only be completely drawn down one time. As the SPR caverns are utilized and partial drawdowns are performed to remove oil from the caverns (e.g., for occasional oil sales , purchases, or exchanges authorized by the Congress or the President), the changes to the cavern caused by these procedures must be tracked and accounted for so that an ongoing assessment of the cavern's drawdown capacity may be continued. A proposed methodology for assessing and tracking the available drawdowns for each cavern was presented in Sobolik et al. (2018). This report is the latest in a series of annual reports, and it includes the baseline available drawdowns for each cavern, and the most recent assessment of the evolution of drawdown expenditure for several caverns.

More Details

Understanding the role of segmentation on process-structure–property predictions made via machine learning

International Journal of Advanced Manufacturing Technology

Massey, Caroline E.; Saldana, Christopher J.; Moore, David G.

The present study investigated the effect of porosity surface determination methods on performance of machine learning models used to predict the tensile properties of AlSi10Mg processed by laser powder bed fusion from micro-computed tomography data. Machine learning models applied in this work include support vector machines, neural networks, decision trees, and Bayesian classifiers. The effects of isosurface thresholding and local gradient approaches for porosity segmentation, as well as image filtering schemes, on model precision were evaluated for samples produced under differing levels of global energy density.

More Details
Results 7201–7250 of 99,299
Results 7201–7250 of 99,299