Publications

Results 1–50 of 156

Search results

Jump to search filters

Microwave-tunable diode effect in asymmetric SQUIDs with topological Josephson junctions

Physical Review Research

Cuozzo, Joseph J.; Pan, Wei P.; Shabani, Javad; Rossi, Enrico

In superconducting systems in which inversion and time-reversal symmetry are simultaneously broken the critical current for positive and negative current bias can be different. For superconducting systems formed by Josephson junctions (JJs) this effect is termed Josephson diode effect. In this paper, we study the Josephson diode effect for a superconducting quantum interference device (SQUID) formed by a topological JJ with a 4π-periodic current-phase relationship and a topologically trivial JJ. We show how the fractional Josephson effect manifests in the Josephson diode effect with the application of a magnetic field and how tuning properties of the trivial SQUID arm can lead to diode polarity switching. We then investigate the ac response and show that the polarity of the diode effect can be tuned by varying the ac power and discuss differences between the ac diode effect of asymmetric SQUIDs with no topological JJ and SQUIDs in which one JJ is topological.

More Details

Single Photon Detection with On-Chip Number Resolving Capability

Chatterjee, Eric N.; Davids, Paul D.; Nenoff, T.M.; Pan, Wei P.; Rademacher, David R.; Soh, Daniel B.

Single photon detection (SPD) plays an important role in many forefront areas of fundamental science and advanced engineering applications. In recent years, rapid developments in superconducting quantum computation, quantum key distribution, and quantum sensing call for SPD in the microwave frequency range. We have explored in this LDRD project a new approach to SPD in an effort to provide deterministic photon-number-resolving capability by using topological Josephson junction structures. In this SAND report, we will present results from our experimental studies of microwave response and theoretical simulations of microwave photon number resolving detector in topological Dirac semimetal Cd3As2. These results are promising for SPD at the microwave frequencies using topological quantum materials.

More Details

Evidence of decoupling of surface and bulk states in Dirac semimetal Cd3As2

Nanotechnology

Yu, W.; Rademacher, David R.; Valdez, Nichole R.; Rodriguez, Mark A.; Nenoff, T.M.; Pan, Wei P.

Dirac semimetals have attracted a great deal of current interests due to their potential applications in topological quantum computing, low-energy electronic devices, and single photon detection in the microwave frequency range. Herein are results from analyzing the low magnetic (B) field weak-antilocalization behaviors in a Dirac semimetal Cd3As2 thin flake device. At high temperatures, the phase coherence length lΦ first increases with decreasing temperature (T) and follows a power law dependence of lΦ ∝ T–0.4. Below ~3 K, lΦ tends to saturate to a value of ~180 nm. Another fitting parameter α, which is associated with independent transport channels, displays a logarithmic temperature dependence for T > 3 K, but also tends to saturate below ~3 K. The saturation value, ~1.45, is very close to 1.5, indicating three independent electron transport channels, which we interpret as due to decoupling of both the top and bottom surfaces as well as the bulk. This result, to our knowledge, provides first evidence that the surfaces and bulk states can become decoupled in electronic transport in Dirac semimetal Cd3As2.

More Details

Microwave response in a topological superconducting quantum interference device

Scientific Reports

Pan, Wei P.; Soh, Daniel B.; Yu, Wenlong; Davids, Paul D.; Nenoff, T.M.

Photon detection at microwave frequency is of great interest due to its application in quantum computation information science and technology. Herein are results from studying microwave response in a topological superconducting quantum interference device (SQUID) realized in Dirac semimetal Cd3As2. The temperature dependence and microwave power dependence of the SQUID junction resistance are studied, from which we obtain an effective temperature at each microwave power level. It is observed the effective temperature increases with the microwave power. This observation of large microwave response may pave the way for single photon detection at the microwave frequency in topological quantum materials.

More Details

Magneto-transport evidence for strong topological insulator phase in ZrTe5

Nature Communications

Wang, Jingyue; Jiang, Yuxuan; Zhao, Tianhao; Dun, Zhiling; Miettinen, Anna L.; Wu, Xiaosong; Mourigal, Martin; Pan, Wei P.; Smirnov, Dmitry

The identification of a non-trivial band topology usually relies on directly probing the protected surface/edge states. But, it is difficult to achieve electronically in narrow-gap topological materials due to the small (meV) energy scales. Here, we demonstrate that band inversion, a crucial ingredient of the non-trivial band topology, can serve as an alternative, experimentally accessible indicator. We show that an inverted band can lead to a four-fold splitting of the non-zero Landau levels, contrasting the two-fold splitting (spin splitting only) in the normal band. We confirm our predictions in magneto-transport experiments on a narrow-gap strong topological insulator, zirconium pentatelluride (ZrTe5), with the observation of additional splittings in the quantum oscillations and also an anomalous peak in the extreme quantum limit. Our work establishes an effective strategy for identifying the band inversion as well as the associated topological phases for future topological materials research.

More Details

Artificial High-Transition Temperature Superconductors

Pan, Wei P.; Reno, John L.

In this work, we have used the well-understood quantum Hall (QH) stripes in high quality two-dimensional electron gases to mimic charge stripes in high transition temperature (Tc) superconductors. The science question we want to address is “Can QH stripes mimic high Tc superconductor stripes and provide a controlled experimental setup to pin-down the role of stripes in high Tc superconductivity?”. We have observed anomalous superconducting transition like behavior in GaAs double quantum well systems (DQWs) when each quantum well (QW) is tuned to the charge stripe states but with different Landau level fillings. Furthermore, we have shown that the transition like behavior is sharper in the DQWs when the two QWs are more strongly coupled. Our results suggest, for the first time, experimental evidence of the paired charge stripes model, which might lead to room-temperature superconductors that have enormously wide applications in computing, energy, and transportation industries. Advancing the science of high transition temperature superconductivity will have a profound impact in advancing energy technologies, ranging from the next generation microchips, new energy transfer grid to public transportation, and thus is important to nation’s energy security and relevant across the landscape of many mission spaces. Sandia has been a leader in materials science research and development. The proposed research takes advantage of Sandia’s state-ofthe-art MBE facilities at the Center for Integrated Nanotechnologies (CINT) and utilizes Sandia’s extensive advanced materials characterization resources. We envision a significant impact on the nation’s energy research and security challenges by investing in this research.

More Details

Enhanced stability of quantum Hall skyrmions under radio-frequency radiations

Scientific Reports

Pan, Wei P.; Reno, J.L.; Reyes, A.P.

We present in this paper the results from a recent study on the stability of the quantum Hall skyrmions state at a Landau level filling factor (ν) close to ν = 1 in a narrow GaAs quantum well. Consistent with previous work, a resonant behavior is observed in the resistively detected NMR measurements. In the subsequent current-voltage (I-V) measurements to examine its breakdown behavior under radio frequency radiations, we observe that the critical current assumes the largest value right at the 75As nuclear resonant frequency. We discuss possible origin for this unexpectedly enhanced stability.

More Details

Electronic transport properties of a lithium-decorated ZrTe5 thin film

Scientific Reports

Nenoff, T.M.; Yu, Wenlong; Elias, Jamie A.; Chen, Kuan W.; Baumbach, Ryan; Modine, N.A.; Pan, Wei P.; Henriksen, Erik A.

Through a combination of single crystal growth, experiments involving in situ deposition of surface adatoms, and complimentary modeling, we examine the electronic transport properties of lithium-decorated ZrTe5 thin films. We observe that the surface states in ZrTe5 are robust against Li adsorption. Both the surface electron density and the associated Berry phase are remarkably robust to adsorption of Li atoms. Fitting to the Hall conductivity data reveals that there exist two types of bulk carriers: those for which the carrier density is insensitive to Li adsorption, and those whose density decreases during initial Li depositions and then saturates with further Li adsorption. We propose this dependence is due to the gating effect of a Li-adsorption-generated dipole layer at the ZrTe5 surface.

More Details

Enhance coherence time in intensely driven quantum systems

Pan, Wei P.; Reno, J.L.; Tranchida, Julien G.

Not long ago, it was shown that a discrete time crystal can be realized if a quantum system is periodically driven to a non-equilibrium state. Proof-of-concept experiments are reported by two groups using trapped ions and nitrogen-vacancy centers in diamond, respectively. The concept of discrete time crystals vividly demonstrates that the coherence time of a quantum system may be enhanced by driving the system out of equilibrium. In this project, we want to test this novel concept in another canonical quantum system, the quantum Hall system in a two-dimensional electron gas (2DEG). Compared to other systems, quantum Hall magnetism (QHM) in high quality, industry-compatible GaAs/AlGaAs heterostructures allows for detailed and quantitative studies in a particularly simple and clean environment. This detailed knowledge should help achieve longer coherence times in a driven QHM system. This report will detail the results from a recent study on the stability of the quantum Hall skyrmions (QHS) state at a Landau level filling close to ν = 1 by measuring its current-voltage (I-V) breakdown characteristics under radio-frequency (RF) radiations. We observe that the critical current increases visibly when the RF frequency is right at the Larmor frequency of 75As nuclei, where the hyperfine interaction between electron and nuclear spins perturbs the QHS state most significantly. We believe that this observation is consistent with the novel concept that the coherence time of a quantum system may be enhanced by driving the system out of equilibrium.

More Details

Unraveling the Topological Phase of ZrTe5 via Magnetoinfrared Spectroscopy

Physical Review Letters

Jiang, Y.; Wang, J.; Zhao, T.; Dun, Z.L.; Huang, Q.; Wu, X.S.; Mourigal, M.; Pan, Wei P.; Ozerov, M.; Smirnov, D.

For materials near the phase boundary between weak and strong topological insulators (TIs), their band topology depends on the band alignment, with the inverted (normal) band corresponding to the strong (weak) TI phase. Here, taking the anisotropic transition-metal pentatelluride ZrTe5 as an example, we show that the band inversion manifests itself as a second extremum (band gap) in the layer stacking direction, which can be probed experimentally via magnetoinfrared spectroscopy. Specifically, we find that the band anisotropy of ZrTe5 features a slow dispersion in the layer stacking direction, along with an additional set of optical transitions from a band gap next to the Brillouin zone center. Our work identifies ZrTe5 as a strong TI at liquid helium temperature and provides a new perspective in determining band inversion in layered topological materials.

More Details

Zero-bias conductance peak in Dirac semimetal-superconductor devices

Physical Review Research

W Yu, Rafael H.; Rodriguez, Mark A.; Lee, Stephen R.; Zhang, F.; Franz, M.; Pikulin, D.I.; Pan, Wei P.

Majorana zero modes (MZMs), fundamental building blocks for realizing topological quantum computers, can appear at the interface between a superconductor and a topological material. One of the experimental signatures that has been widely pursued to confirm the existence of MZMs is the observation of a large, quantized zero-bias conductance peak (ZBCP) in the differential conductance measurements. In this Letter, we report observation of such a large ZBCP in junction structures of normal metal (titanium/gold Ti/Au)-Dirac semimetal (cadmium-arsenide Cd3As2)-conventional superconductor (aluminum Al), with a value close to four times that of the normal state conductance. Our detailed analyses suggest that this large ZBCP is most likely not caused by MZMs. We attribute the ZBCP, instead, to the existence of a supercurrent between two far-separated superconducting Al electrodes, which shows up as a zero-bias peak because of the circuitry and thermal fluctuations of the supercurrent phase, a mechanism conceived by Ivanchenko and Zil'berman more than 50 years ago [Ivanchenko and Zil'berman, JETP 28, 1272 (1969)]. Our results thus call for extreme caution when assigning the origin of a large ZBCP to MZMs in a multiterminal semiconductor or topological insulator/semimetal setup. We thus provide criteria for identifying when the ZBCP is definitely not caused by an MZM. Furthermore, we present several remarkable experimental results of a supercurrent effect occurring over unusually long distances and clean perfect Andreev reflection features.

More Details

Single-Crystal Synthesis and Characterization of Copper-Intercalated ZrTe5

Crystal Growth and Design

Nenoff, T.M.; Pan, Wei P.; Rademacher, David X.; Rodriguez, Mark A.; Yu, Wenlong

Herein is presented the synthesis and characterization of copper-intercalated zirconium pentatelluride (ZrTe5). ZrTe5:Cu0.05 crystals are synthesized by the chemical vapor transport method in a vacuum. X-ray diffraction and elemental analysis techniques are utilized to validate the synthesis. The results indicate that the intercalation of the layered Zr/Te structure with copper atoms causes the contraction of the unit cell along all three crystalline directions, the shrinkage of the overall volume of the unit cell, and the distortion of the unit cell. A single crystal was isolated, mechanically exfoliated, and used for the measurements of intercalation strains in a Hall bar device. Electronic transport studies indicate that an anomalous resistance drop is observed at T = 19 K. Furthermore, Rxx and Rxy results, respectively, indicate a probable disorder-induced localization effect and electron-type carriers.

More Details

Topological Quantum Materials for Quantum Computation

Nenoff, T.M.; Chou, Stanley S.; Dickens, Peter D.; Modine, N.A.; Yu, Wenlong; Lee, Stephen R.; Sapkota, Keshab R.; Wang, George T.; Wendt, J.R.; Medlin, Douglas L.; Leonard, Francois L.; Pan, Wei P.

Recent years have seen an explosion in research efforts discovering and understanding novel electronic and optical properties of topological quantum materials (TQMs). In this LDRD, a synergistic effort of materials growth, characterization, electrical-magneto-optical measurements, combined with density functional theory and modeling has been established to address the unique properties of TQMs. Particularly, we have carried out extensive studies in search for Majorana fermions (MFs) in TQMs for topological quantum computation. Moreover, we have focused on three important science questions. 1) How can we controllably tune the properties of TQMs to make them suitable for quantum information applications? 2) What materials parameters are most important for successfully observing MFs in TQMs? 3) Can the physical properties of TQMs be tailored by topological band engineering? Results obtained in this LDRD not only deepen our current knowledge in fundamental quantum physics but also hold great promise for advanced electronic/photonic applications in information technologies.

More Details

Topological Quantum Materials for Realizing Majorana Quasiparticles

Chemistry of Materials

Nenoff, T.M.; Pan, Wei P.; Sharma, Peter A.; Lima-Sharma, Ana L.; Lee, Stephen R.

In the past decade, basic physics, chemistry, and materials science research on topological quantum materials - and their potential use to implement reliable quantum computers - has rapidly expanded to become a major endeavor. A pivotal goal of this research has been to realize materials hosting Majorana quasiparticles, thereby making topological quantum computing a technological reality. While this goal remains elusive, recent data-mining studies, performed using topological quantum chemistry methodologies, have identified thousands of potential topological materials - some, and perhaps many, with potential for hosting Majoranas. We write this Review for advanced materials researchers who are interested in joining this expanding search, but who are not currently specialists in topology. The first half of the Review addresses, in readily understood terms, three main areas associated with topological sciences: (1) a description of topological quantum materials and how they enable quantum computing; (2) an explanation of Majorana quasiparticles, the important topologically endowed properties, and how it arises quantum mechanically; and (3) a description of the basic classes of topological materials where Majoranas might be found. The second half of the Review details selected materials systems where intense research efforts are underway to demonstrate nontrivial topological phenomena in the search for Majoranas. Specific materials reviewed include the groups II-V semiconductors (Cd3As2), the layered chalcogenides (MX2, ZrTe5), and the rare-earth pyrochlore iridates (A2Ir2O7, A = Eu, Pr). In each case, we describe crystallographic structures, bulk phase diagrams, materials synthesis methods (bulk, thin film, and/or nanowire forms), methods used to characterize topological phenomena, and potential evidence for the existence of Majorana quasiparticles.

More Details

A missing step is a key step

Nature Materials

Zhang, Fan; Pan, Wei P.

In a uniform superconductor, electrons form Cooper pairs that pick up the same quantum mechanical phase for their bosonic wavefunctions. This spontaneously breaks the gauge symmetry of electromagnetism. In 1962 Josephson predicted, and it was subsequently observed, that Cooper pairs can quantum mechanically tunnel between two weakly coupled superconductors that have a phase difference Φ. The resulting supercurrent is a 2π periodic function of the phase difference Φ across the junction. This is the celebrated Josephson effect. More recently, a fractional Josephson effect related to the presence of Majorana bound states — Majoranas — has been predicted for topological superconductors. This fractional Josephson effect has a characteristic 4π periodic current–phase relation. Now, writing in Nature Materials, Chuan Li and colleagues report experiments that utilize nanoscale phase-sensitive junction technology to induce superconductivity in a fine-tuned Dirac semimetal Bi0.97Sb0.03 and discover a significant contribution of 4π periodic supercurrent in Nb–Bi0.97Sb0.03–Nb Josephson junctions under radiofrequency irradiation.

More Details

Anomalously large resistance at the charge neutrality point in a zero-gap InAs/GaSb bilayer

New Journal of Physics

Yu, Wenlong; Clerico, V.; Fuentevilla, C.H.; Shi, X.; Jiang, Y.; Saha, D.; Lou, W.K.; Chang, K.; Huang, D.H.; Gumbs, G.; Smirnov, D.; Stanton, C.J.; Jiang, Z.; Bellani, V.; Meziani, Y.; Diez, E.; Pan, Wei P.; Hawkins, Samuel D.; Klem, John F.

We report here our recent electron transport results in spatially separated two-dimensional electron and hole gases with nominally degenerate energy subbands, realized in an InAs(10 nm)/GaSb(5 nm) coupled quantum well. We observe a narrow and intense maximum (∼500 kΩ) in the four-terminal resistivity in the charge neutrality region, separating the electron-like and hole-like regimes, with a strong activated temperature dependence above T = 7 K and perfect stability against quantizing magnetic fields. We discuss several mechanisms for that unexpectedly large resistance in this zero-gap semi-metal system including the formation of an excitonic insulator state.

More Details

Electrical-current-induced magnetic hysteresis in self-assembled vertically aligned La2/3Sr1/3MnO3:ZnO nanopillar composites

Physical Review Materials

Pan, Wei P.; Lu, Ping L.; Ihlefeld, J.F.; Lee, Stephen R.; Choi, E.S.; Jiang, Y.; Jia, Q.X.

Magnetoresistive random-access memory (MRAM) is poised to become a next-generation information storage device. Yet, many materials challenges remain unsolved before it can become a widely used memory storage solution. Among them, an urgent need is to identify a material system that is suitable for downscaling and is compatible with low-power logic applications. Self-assembled, vertically aligned La2/3Sr1/3MnO3: ZnO nanocomposites, in which La2/3Sr1/3MnO3 (LSMO) matrix and ZnO nanopillars form an intertwined structure with coincident-site-matched growth occurring between the LSMO and ZnO vertical interfaces, may offer new MRAM applications by combining their superior electric, magnetic ( B ), and optical properties. Here, in this Rapid Communication, we show the results of electrical current induced magnetic hysteresis in magnetoresistance measurements in these nanopillar composites. We observe that when the current level is low, for example, 1 µA, the magnetoresistance displays a linear, negative, nonhysteretic B field dependence. Surprisingly, when a large current is used, I > 10 µA, a hysteretic behavior is observed when the B field is swept in the up and down directions. This hysteresis weakens as the sample temperature is increased. Finally, a possible spin-valve mechanism related to this electrical current induced magnetic hysteresis is proposed and discussed.

More Details

Strong Photothermoelectric Response and Contact Reactivity of the Dirac Semimetal ZrTe5

ACS Applied Materials and Interfaces

Leonard, Francois L.; Yu, Wenlong; Celio, Kimberlee C.; Medlin, Douglas L.; Sugar, Joshua D.; Talin, A.A.; Pan, Wei P.

The family of three-dimensional topological insulators opens new avenues to discover novel photophysics and to develop novel types of photodetectors. ZrTe5 has been shown to be a Dirac semimetal possessing unique topological, electronic, and optical properties. Here, we present spatially resolved photocurrent measurements on devices made of nanoplatelets of ZrTe5, demonstrating the photothermoelectric origin of the photoresponse. Because of the high electrical conductivity and good Seebeck coefficient, we obtain noise-equivalent powers as low as 42 pW/Hz1/2, at room temperature for visible light illumination, at zero bias. We also show that these devices suffer from significant ambient reactivity, such as the formation of a Te-rich surface region driven by Zr oxidation as well as severe reactions with the metal contacts. This reactivity results in significant stresses in the devices, leading to unusual geometries that are useful for gaining insight into the photocurrent mechanisms. Our results indicate that both the large photothermoelectric response and reactivity must be considered when designing or interpreting photocurrent measurements in these systems.

More Details

Emergent Phenomena in Oxide Nanostructures

Pan, Wei P.; Ihlefed, Jon F.; Lu, Ping L.; Lee, Stephen R.

The field of oxide electronics has seen tremendous growth over two decades and oxide materials find wide-ranging applications in information storage, fuel cells, batteries, and more. Phase transitions, such as magnetic and metal-to-insulator transitions, are one of the most important phenomena in oxide nanostructures. Many novel devices utilizing these phase transitions have been proposed, ranging from ultrafast switches for logic applications to low power memory structures. Yet, despite this promise and many years of research, a complete understanding of phase transitions in oxide nanostructures remains elusive. In this LDRD, we report two important observations of phase transitions. We conducted a systematic study of these transitions. Moreover, emergent quantum phenomena due to the strong correlations and interactions among the charge, orbital, and spin degrees of freedom inherent in transition metal oxides were explored. In addition, a new, fast atomic-scale chemical imaging technique developed through the characterization of these oxides is presented.

More Details

High-cooperativity terahertz landau polaritons in the ultrastrong coupling regime

International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz

Li, Xinwei; Zhang, Qi; Lou, Minhan; Reno, J.L.; Pan, Wei P.; Watson, John D.; Manfra, Michael J.; Kono, Junichiro

We have integrated an ultrahigh mobility twodimensional electron gas with a high-quality-factor terahertz photonic cavity. With a quantizing magnetic field and at low temperatures, we demonstrated collective nonperturbative coupling of the electron cyclotron resonance with terahertz cavity photons with a high cooperativity. Due to the suppression of superradiance-induced broadening of cyclotron resonance by the high-quality-factor cavity, our hybrid quantum system exhibited unprecedentedly sharp polariton lines and a large vacuum Rabi splitting simultaneously.

More Details

National High Magnetic Field Laboratory 2016 Annual Research Report: Termination of Two-Dimensional Metallic Conduction near the Metal-Insulator Transition in Si/SiGe Quantum Wells

Pan, Wei P.; Lu, Tzu-Ming L.; Xia, J.S.; Sullivan, N.S.; Huang, S.H.; Chuang, Y.; Li, J.Y.; Liu, C.W.; Tsui, D.C.

The physical properties of two-dimensional (2D) electrons have been a subject of interest for a long time. Yet after many years of research, the ground states of a 2D electron system (2DES) in the presence of disorder and electron-electron interaction, a realistic situation in experiments, remain an open question. Recent observations of a downturn in conductivity at low temperatures in a Si/SiGe quantum well [1], Si-MOSFETs [2,3], and 2D holes in GaAs [4-6] seem to suggest that disorder plays an important role in the so-called 2D metal-insulator transition (MIT) and at T → 0 2DES may eventually become insulating. In this experiment, we focus on the downturn behavior as a function of spin polarization, which is varied by an in-plane magnetic field.

More Details

Tilted magnetic field study of ZrTe5

Yu, Wenlong; Jiang, Y.; Yang, J.; Dun, Zhiling; Zhou, H.D.; Jiang, Z.; Lu, Ping L.; Pan, Wei P.

ZrTe5, a topological semimetal, has recently attracted great attention due to its extraordinary electronic properties. Extensive studies have been carried out in ZrTe5 on their charge transport properties. However, there are few studies on their spin properties. One well-developed technique to study spin degeneracy of a Landau level (LL) in a two-dimensional system is by tilting magnetic field. It is known that the Landau level energy is proportional to the magnetic field normal component while the Zeeman energy scales with the total magnetic field. Therefore, these two energy scales can be tuned relatively to each other in a tilted magnetic field.

More Details
Results 1–50 of 156
Results 1–50 of 156