Publications

Results 1–25 of 100

Search results

Jump to search filters

Engineering the Quantum Scientific Computing Open User Testbed

IEEE Transactions on Quantum Engineering

Clark, Susan M.; Lobser, Daniel L.; Revelle, Melissa R.; Yale, Christopher G.; Bossert, David B.; Grinevich, Ashlyn D.; Chow, Matthew N.; Hogle, Craig W.; Ivory, Megan K.; Pehr, Jessica; Salzbrenner, Bradley S.; Stick, Daniel L.; Sweatt, W.C.; Wilson, Joshua M.; Winrow, Edward G.; Maunz, Peter

The Quantum Scientific Computing Open User Testbed (QSCOUT) at Sandia National Laboratories is a trapped-ion qubit system designed to evaluate the potential of near-term quantum hardware in scientific computing applications for the U.S. Department of Energy and its Advanced Scientific Computing Research program. Similar to commercially available platforms, it offers quantum hardware that researchers can use to perform quantum algorithms, investigate noise properties unique to quantum systems, and test novel ideas that will be useful for larger and more powerful systems in the future. However, unlike most other quantum computing testbeds, the QSCOUT allows both quantum circuit and low-level pulse control access to study new modes of programming and optimization. The purpose of this article is to provide users and the general community with details of the QSCOUT hardware and its interface, enabling them to take maximum advantage of its capabilities.

More Details

High-magnification, long-working distance plenoptic background oriented schlieren (BOS)

AIAA Scitech 2020 Forum

Guildenbecher, Daniel R.; Kunzler, William M.; Sweatt, W.C.; Casper, Katya M.

The design, construction, and testing of a high-magnification, long working-distance plenoptic camera is reported. A plenoptic camera uses a microlens array to enable resolution of the spatial and angular information of the incoming light field. Instantaneous images can be numerically refocused and perspective shifted in post-processing to enable threedimensional (3D) resolution of a scene. Prior to this work, most applications of plenoptic imaging were limited to relatively low magnifications (1× or less) or small working distances. Here, a unique system is developed with enables 5× magnification at a working distance of over a quarter meter. Experimental results demonstrate ~25 µm spatial resolution with 3D imaging capabilities. This technology is demonstrated for 3D imaging of the shock structure in a underexpanded, Mach 3.3 free air jet.

More Details

Hybrid Integration of III-V Solar Microcells for High-Efficiency Concentrated Photovoltaic Modules

IEEE Journal of Selected Topics in Quantum Electronics

Tauke-Pedretti, Anna; Cederberg, Jeffrey G.; Cruz-Campa, Jose L.; Alford, Charles A.; Sanchez, Carlos A.; Sweatt, W.C.; Jared, Bradley H.; Keeler, Gordon A.; Paap, Scott M.; Okandan, Murat; Li, Lan; Li, Duanhui; Gu, Tian; Hu, Juejun; Nielson, Gregory N.

The design, fabrication, and performance of InGaAs and InGaP/GaAs microcells are presented. These cells are integrated with a Si wafer providing a path for insertion in hybrid concentrated photovoltaic modules. Comparisons are made between bonded cells and cells fabricated on their native wafer. The bonded cells showed no evidence of degradation in spite of the integration process that involved significant processing including the removal of the III-V substrate.

More Details

Extending Hypersonic Diagnostics to the Third Dimension

Guildenbecher, Daniel R.; Kunzler, William M.; Sweatt, W.C.; Richardson, Daniel R.; Casper, Katya M.

The design, construction, and initial testing of a high-magnification, long working-distance plenoptic camera is reported. A plenoptic camera uses a microlens array to enable resolution of the spatial and angular information of the incoming light field. With this, instantaneous images can be numerically refocused and perspective shifted in post-processing to enable instantaneous three-dimensional (3D) resolution of a scene. Prior to this work, most applications of plenoptic imaging were limited to relatively low magnifications (1× or less) or small working distances. Here, a unique system is developed with enables 5× magnification at a working distance of over a quarter meter. Experimental results demonstrate ~25 m spatial resolution with 3D imaging capabilities. This technology is demonstrated on two practical applications. First, burning aluminum particles on the order of 100 m in diameter are imaged near the reacting surface of a combusting solid rocket propellant. The long working distance is particularly advantageous for protection of the experimental hardware in this extremely hazardous environment. Next, background oriented schlieren is used to resolve the 3D structure of an underexpanded free jet. This demonstrates the ability to resolve index-of-refraction gradients at the working distances and spatial scales necessary to meet our ultimate goal of resolving 3D turbulent transition in the boundary layer of Sandia’s Hypersonic Wind Tunnel (HWT).

More Details

Photoacoustic Sounds from Meteors

Scientific Reports

Spalding, Richard E.; Tencer, John T.; Sweatt, W.C.; Laros, James H.; Boslough, Mark B.; Gonzales, Gi G.; Spurny, Pavel

Concurrent sound associated with very bright meteors manifests as popping, hissing, and faint rustling sounds occurring simultaneously with the arrival of light from meteors. Numerous instances have been documented with â '11 to â '13 brightness. These sounds cannot be attributed to direct acoustic propagation from the upper atmosphere for which travel time would be several minutes. Concurrent sounds must be associated with some form of electromagnetic energy generated by the meteor, propagated to the vicinity of the observer, and transduced into acoustic waves. Previously, energy propagated from meteors was assumed to be RF emissions. This has not been well validated experimentally. Herein we describe experimental results and numerical models in support of photoacoustic coupling as the mechanism. Recent photometric measurements of fireballs reveal strong millisecond flares and significant brightness oscillations at frequencies ≥40 Hz. Strongly modulated light at these frequencies with sufficient intensity can create concurrent sounds through radiative heating of common dielectric materials like hair, clothing, and leaves. This heating produces small pressure oscillations in the air contacting the absorbers. Calculations show that â '12 brightness meteors can generate audible sound at ∼25 dB SPL. The photoacoustic hypothesis provides an alternative explanation for this longstanding mystery about generation of concurrent sounds by fireballs.

More Details

Compound Semiconductor Integrated Photonics for Avionics

Tauke-Pedretti, Anna; Vawter, Gregory A.; Skogen, Erik J.; Alford, Charles A.; Cajas, Florante G.; Overberg, Mark E.; Peake, Gregory M.; Wendt, J.R.; Chow, Weng W.; Lentine, Anthony L.; Nelson, Jeffrey S.; Sweatt, W.C.; Jared, Bradley H.; Resnick, Paul J.; Sanchez, Carlos A.; Pipkin, Jennifer R.; Girard, Gerald R.; Nielson, Greg; Cruz-Campa, Jose L.; Okandan, Murat

Abstract not provided.

Holographic Spectrum Splitting Demonstration System for Duel Photovoltaic and Biofuel Operation

Sweatt, W.C.; Vorndan, Shelby; Gupta, Vipin P.

Spectrum splitting is an optical technique that can increase conversion efficiency or add energy storage capability to a photovoltaic (PV) energy system. In this Sandia National Laboratory Campus Executive project, two distinct types of Diffractive Optical Elements (DOEs) for spectrum splitting were developed, fabricated and measured. The first DOE was an algorithmically-designed freeform surface relief structure. A parametric study of the Broadband Gerchberg-Saxton algorithm was performed to show the effect of design variables on device performance. Two DOE designs were fabricated using a grayscale Maskless Lithography Tool (MLT) and measured. The second DOE was a volume holographic lens. This concept was explored in the context of hybrid PV/biofuel implementation, and was later applied to a multiple-bandgap PV module. A design process was developed to ensure diffraction into a single order across the lens and to enable spectral tuning of diffracted light. A proof-of-concept off-axis holographic lens was fabricated and measured. The report concludes with a summary of spectrum splitting performance and discussion of areas for improvement and future work.

More Details

Next Generation Photovoltaic Technologies For High-Performance Remote Power Generation (Final Report)

Lentine, Anthony L.; Nielson, Greg N.; Riley, Daniel R.; Okandan, M.; Sweatt, W.C.; Jared, Bradley H.; Resnick, Paul J.; Kim, B.; Kratochvil, Jay; Anderson, B.J.; Cruz-Campa, J.L.; Gupta, Vipin P.; Tauke-Pedretti, Anna; Cederberg, J.G.; Paap, Scott M.; Sanchez, Carlos A.; Nordquist, Christopher N.; Saavedra, Michael P.; Ballance, Mark H.; Nguyen, J.; Alford, Charles A.; Nelson, John S.; Lavin, Judith M.; Clews, P.; Pluym, Tammy P.; Wierer, J.; Wang, George T.; Biefeld, Robert M.; Luk, Ting S.; Brener, Igal B.; Granata, J.; Aguirre, Brandon A.; Haney, Mike; Agrawal, Gautam; Gu, Tian

A unique, micro-scale architecture is proposed to create a novel hybrid concentrated photovoltaic system. Micro-scale (sub-millimeter wide), multi-junction cells are attached to a large-area silicon cell backplane (several inches wide) that can optimally collect both direct and diffuse light. By using multi- junction III-V cells, we can get the highest possible efficiency of the direct light input. In addition, by collecting the diffuse light in the large-area silicon cell, we can produce power on cloudy days when the concentrating cells would have minimal output. Through the use of micro-scale cells and lenses, the overall assembly will provide higher efficiency than conventional concentrators and flat plates, while keeping the form factor of a flat plate module. This report describes the hybrid concept, the design of a prototype, including the PV cells and optics, and the experimental results.

More Details

Microsystem Enabled Photovoltaics

Nielson, Gregory; Cruz Campa, Jose L.; Okandan, Murat; Lentine, Anthony L.; Sweatt, W.C.; Gupta, Vipin P.; Tauke-Pedretti, Anna; Jared, Bradley H.; Resnick, Paul J.; Cederberg, Jeffrey; Paap, Scott M.; Sanchez, Carlos A.; Biefeld, Robert M.; Langlois, Eric L.; Yang, Benjamin; Koleske, Daniel K.; Wierer, Jonathan; Miller, William K.; Elisberg, Brenton E.; Laros, James H.; Luna, Ian; Saavedra, Michael P.; Alford, Charles A.; Ballance, Mark H.; Wiwi, Michael W.; Samora, S.; Chavez, Julie C.; Pipkin, Jennifer R.; Nguyen, Janet; Anderson, Ben; Gu, Tian; Agrawal, Gautum; Nelson, Jeffrey S.

Abstract not provided.

Photoacoustic Sounds from Meteors

Sandia journal manuscript; Not yet accepted for publication

Spalding, Richard E.; Tencer, John T.; Sweatt, W.C.; Laros, James H.; Boslough, Mark B.; Gonzales, Gi G.

High-speed photometric observations of meteor fireballs have shown that they often produce high-amplitude light oscillations with frequency components in the kHz range, and in some cases exhibit strong millisecond flares. We built a light source with similar characteristics and illuminated various materials in the laboratory, generating audible sounds. Models suggest that light oscillations and pulses can radiatively heat dielectric materials, which in turn conductively heats the surrounding air on millisecond timescales. The sound waves can be heard if the illuminated material is sufficiently close to the observer’s ears. The mechanism described herein may explain many reports of meteors that appear to be audible while they are concurrently visible in the sky and too far away for sound to have propagated to the observer. This photoacoustic (PA) explanation provides an alternative to electrophonic (EP) sounds hypothesized to arise from electromagnetic coupling of plasma oscillation in the meteor wake to natural antennas in the vicinity of an observer.

More Details

Reduced Silicon Usage in Flat Photo-Voltaic Panels

Photovoltaic Specialists conf. 2015

Sweatt, W.C.; Nielson, Gregory N.; Okandan, Murat O.

Silicon usage in fixed, flat-panel photovoltaic systems can be reduced by 60 to 75% with no efficiency loss through use of arrays of mini-concentrators. These concentrators are simple trough-like reflectors that are formed in flat sheets of ~1- mm thick optical plastic. Concentration ratios of 2.55X can be achieved on rooftops and 4.0X on walls while collecting all of the direct sun and scattered skylight. The concentrators are fabricated in optical plastic— preferably polycarbonate for its high refractive index. The panels are typically 1mm thick so the weight of a panel is ~1kg/m2. In addition to the rooftop, wall and window blind designs, a design is proposed that can be tilted toward the sun position at the equinox. These systems are all designed so they can be mass-produced.

More Details

Camera System Resolution and its Influence on Digital Image Correlation

Experimental Mechanics

Reu, Phillip L.; Sweatt, W.C.; Miller, T.; Fleming, Darryn F.

Digital image correlation (DIC) uses images from a camera and lens system to make quantitative measurements of the shape, displacement, and strain of test objects. This increasingly popular method has had little research on the influence of the imaging system resolution on the DIC results. This paper investigates the entire imaging system and studies how both the camera and lens resolution influence the DIC results as a function of the system Modulation Transfer Function (MTF). It will show that when making spatial resolution decisions (including speckle size) the resolution limiting component should be considered. A consequence of the loss of spatial resolution is that the DIC uncertainties will be increased. This is demonstrated using both synthetic and experimental images with varying resolution. The loss of image resolution and DIC accuracy can be compensated for by increasing the subset size, or better, by increasing the speckle size. The speckle-size and spatial resolution are now a function of the lens resolution rather than the more typical assumption of the pixel size. The paper will demonstrate the tradeoffs associated with limited lens resolution.

More Details

Cost analysis of flat-plate concentrators employing microscale photovoltaic cells for high energy per unit area applications

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Paap, Scott; Gupta, Vipin P.; Tauke-Pedretti, Anna; Resnick, Paul J.; Sanchez, Carlos A.; Nielson, Gregory N.; Cruz-Campa, Jose L.; Jared, Bradley H.; Nelson, Jeffrey; Okandan, Murat O.; Sweatt, W.C.

Microsystems Enabled Photovoltaics (MEPV) is a relatively new field that uses microsystems tools and manufacturing techniques familiar to the semiconductor industry to produce microscale photovoltaic cells. The miniaturization of these PV cells creates new possibilities in system designs that can be used to reduce costs, enhance functionality, improve reliability, or some combination of all three. In this article, we introduce analytical tools and techniques to estimate the costs associated with a hybrid concentrating photovoltaic system that uses multi-junction microscale photovoltaic cells and miniaturized concentrating optics for harnessing direct sunlight, and an active c-Si substrate for collecting diffuse sunlight. The overall model comprises components representing costs and profit margin associated with the PV cells, concentrating optics, balance of systems, installation, and operation. This article concludes with an analysis of the component costs with particular emphasis on the microscale PV cell costs and the associated tradeoffs between cost and performance for the hybrid CPV design.

More Details

Non-Contact Handheld Reader for Reflective Particle Tags

Smartt, Heidi A.; Sinclair, Michael B.; Sweatt, W.C.

Reflective particle tags derive their unique identities through utilization of thousands of microscopic reflective elements randomly suspended in a clear adhesive matrix. For verification of a tag's authenticity, an illumination/imaging system is used to "read" information about precise positions and orientations of faceted particles. SNL developed the original Reflective Particle Tag (RPT) system, comprising a tag and an imager, in the 1990's to identify treaty-accountable items. Since then, the RPT system has evolved with advances in computing, imaging, and materials, and is considered a robust, low-cost, hard-to-counterfeit passive tagging system for treaty verification. However, a limitation of the current system is the need to mechanically dock the reader with the tag, which prevents its use in many situations. This paper discusses R&D at SNL to develop a non-contact handheld imaging system that will allow RPT system use in new scenarios and allows automation.

More Details
Results 1–25 of 100
Results 1–25 of 100