Magnetic Imaging of SPIONs using NVs in Diamond
Abstract not provided.
Abstract not provided.
This report documents work done at the Sandia Ion Beam Laboratory to develop a capability to produce 14 Me neutrons at levels sufficient for testing radiation effects on electronic materials and components. The work was primarily enabled by a laboratory directed research and development (LDRD) project. The main elements of the work were to optimize target lifetime, test a new thin- film target design concept to reduce tritium usage, design and construct a new target chamber and beamline optimized for high-flux tests, and conduct tests of effects on electronic devices and components. These tasks were all successfully completed. The improvements in target performance and target chamber design have increased the flux and fluence of 14 MV neutrons available at the test location by several orders of magnitude. The outcome of the project is that a new capability for testing radiation-effects on electronic components from 14 MeV neutrons is now available at Sandia National Laboratories. This capability has already been extensively used for many qualification and component evaluation and development tests.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Nuclear Science
The image classification accuracy of a TaOx ReRAM-based neuromorphic computing accelerator is evaluated after intentionally inducing a displacement damage up to a fluence of 1014 2.5-MeV Si ions/cm2 on the analog devices that are used to store weights. Results are consistent with a radiation-induced oxygen vacancy production mechanism. When the device is in the high-resistance state during heavy ion radiation, the device resistance, linearity, and accuracy after training are only affected by high fluence levels. The findings in this paper are in accordance with the results of previous studies on TaOx-based digital resistive random access memory. When the device is in the low-resistance state during irradiation, no resistance change was detected, but devices with a 4-kΩ inline resistor did show a reduction in accuracy after training at 1014 2.5-MeV Si ions/cm2. This indicates that changes in resistance can only be somewhat correlated with changes to devices' analog properties. This paper demonstrates that TaOx devices are radiation tolerant not only for high radiation environment digital memory applications but also when operated in an analog mode suitable for neuromorphic computation and training on new data sets.
IEEE Transactions on Nuclear Science
With the growing interest to explore Jupiter's moons, technologies with +10 Mrad(Si) tolerance are now needed, to survive the Jovian environment. Conductive-bridging random access memory (CBRAM) is a nonvolatile memory that has shown a high tolerance to total ionizing dose (TID). However, it is not well understood how CBRAM behaves in an energetic ion environment where displacement damage (DD) effects may also be an issue. In this paper, the response of CBRAM to 100-keV Li, 1-MeV Ta, and 200-keV Si ion irradiations is examined. Ion bombardment was performed with increasing fluence steps until the CBRAM devices failed to hold their programed state. The TID and DD dose (DDD) at the fluence of failure were calculated and compared against tested ion species. Results indicate that failures are more highly correlated with TID than DDD. DC cycling tests were performed during 100-keV Li irradiations and evidence was found that the mobile Ag ion supply diminished with increasing fluence. The cycling results, in addition to prior 14-MeV neutron work, suggest that DD may play a role in the eventual failure of a CBRAM device in a combined radiation environment.
Nature Communications
The uncontrolled interaction of a quantum system with its environment is detrimental for quantum coherence. For quantum bits in the solid state, decoherence from thermal vibrations of the surrounding lattice can typically only be suppressed by lowering the temperature of operation. Here, we use a nano-electro-mechanical system to mitigate the effect of thermal phonons on a spin qubit - the silicon-vacancy colour centre in diamond - without changing the system temperature. By controlling the strain environment of the colour centre, we tune its electronic levels to probe, control, and eventually suppress the interaction of its spin with the thermal bath. Strain control provides both large tunability of the optical transitions and significantly improved spin coherence. Finally, our findings indicate the possibility to achieve strong coupling between the silicon-vacancy spin and single phonons, which can lead to the realisation of phonon-mediated quantum gates and nonlinear quantum phononics.
Science
Photon-mediated interactions between quantum systems are essential for realizing quantum networks and scalable quantum information processing. We demonstrate such interactions between pairs of silicon-vacancy (SiV) color centers coupled to a diamond nanophotonic cavity. When the optical transitions of the two color centers are tuned into resonance, the coupling to the common cavity mode results in a coherent interaction between them, leading to spectrally resolved superradiant and subradiant states. We use the electronic spin degrees of freedom of the SiV centers to control these optically mediated interactions. Such controlled interactions will be crucial in developing cavity-mediated quantum gates between spin qubits and for realizing scalable quantum network nodes.
Our goal was to develop an integrated platform for electrical control of SiV defects in diamond. The understanding and techniques we discover for electrical control have direct relevance for scalable color center based devices. More fundamentally, they can serve as a basis for developing diamond light sources and exploring color center transitions previously understood as inaccessible. While we did not meet all these goals we did develop a unique set of capabilities that allowed Sandia to distinct itself both internally and through continuing external collaborations.
Abstract not provided.
Abstract not provided.