Single Event Upset and Total Ionizing Dose Response of 12LP FinFET Digital Circuits
Abstract not provided.
Abstract not provided.
IEEE Transactions on Nuclear Science
Semiconductor-insulator interfaces play an important role in the reliability of integrated devices; however, the impact of these interfaces on the physical mechanisms related to single-event effects has not been previously reported. We present experimental data that demonstrate that single-event charge collection can be impacted by changes in interface quality. The experimental data, combined with simulations, show that single-event response may depend on surface recombination at interface defects. The effect depends on strike location and increases with increasing linear energy transfer (LET). Surface recombination can affect single-event charge collection for interfaces with a surface recombination velocity (SRV) of 1000 cm/s and is a dominant charge collection mechanism with SRV > 10^{5} cm/s.
IEEE Transactions on Nuclear Science
Four D flip-flop (DFF) layouts were created from the same schematic in Sandia National Laboratories' CMOS7 silicon-on-insulator (SOI) process. Single-event upset (SEU) modeling and testing showed an improved response with the use of shallow (not fully bottomed) N-type metal-oxide-semiconductor field-effect transistors (NMOSFETs), extending the size of the drain implant and increasing the critical charge of the transmission gates in the circuit design and layout. This research also shows the importance of correctly modeling nodal capacitance, which is a major factor determining SEU critical charge. Accurate SEU models enable the understanding of the SEU vulnerabilities and how to make the design more robust.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Nuclear Science
Silicon-on-insulator latch designs and layouts that are robust to multiple-node charge collection are introduced. A general Monte Carlo radiative energy deposition (MRED) approach is used to identify potential single-event susceptibilities associated with different layouts prior to fabrication. MRED is also applied to bound single-event testing responses of standard and dual interlocked cell latch designs. Heavy ion single-event testing results validate new latch designs and demonstrate bounds for standard latch layouts.
IEEE Transactions on Nuclear Science
Silicon-on-insulator latch designs and layouts that are robust to multiple-node charge collection are introduced. A general Monte Carlo radiative energy deposition (MRED) approach is used to identify potential single-event susceptibilities associated with different layouts prior to fabrication. MRED is also applied to bound single-event testing responses of standard and dual interlocked cell latch designs. Heavy ion single-event testing results validate new latch designs and demonstrate bounds for standard latch layouts.