Publications

Results 326–350 of 96,771

Search results

Jump to search filters

On the Harmonic Balance Method Augmented with Nonsmooth Basis Functions for Contact/Impact Problems

Conference Proceedings of the Society for Experimental Mechanics Series

Saunders, Brian E.; Kuether, Robert J.; Vasconcellos, Rui M.G.; Abdelkefi, Abdessattar

In this work, we evaluate the usefulness of nonsmooth basis functions for representing the periodic response of a nonlinear system subject to contact/impact behavior. As with sine and cosine basis functions for classical Fourier series, which have C∞ smoothness, nonsmooth counterparts with C0 smoothness are defined to develop a nonsmooth functional representation of the solution. Some properties of these basis functions are outlined, such as periodicity, derivatives, and orthogonality, which are useful for functional series applied via the Galerkin method. Least-squares fits of the classical Fourier series and nonsmooth basis functions are presented and compared using goodness-of-fit metrics for time histories from vibro-impact systems with varying contact stiffnesses. This formulation has the potential to significantly reduce the computational cost of harmonic balance solvers for nonsmooth dynamical systems. Rather than requiring many harmonics to capture a system response using classical, smooth Fourier terms, the frequency domain discretization could be captured by a combination of a finite Fourier series supplemented with nonsmooth basis functions to improve convergence of the solution for contact-impact problems.

More Details

Case Study on the Effect of Nonlinearity in Dynamic Environment Testing

Conference Proceedings of the Society for Experimental Mechanics Series

Clark, Brennen; Allen, Matthew S.; Pacini, Benjamin R.

While recent research has greatly improved our ability to test and model nonlinear dynamic systems, it is rare that these studies quantify the effect that the nonlinearity would have on failure of the structure of interest. While several very notable exceptions certainly exist, such as the work of Hollkamp et al. on the failure of geometrically nonlinear skin panels for high speed vehicles (see, e.g., Gordon and Hollkamp, Reduced-order models for acoustic response prediction. Technical Report AFRL-RB-WP-TR-2011-3040, Air Force Research Laboratory, AFRL-RB-WP-TR-2011-3040, Dayton, 2011. Issue: AFRL-RB-WP-TR-2011-3040AFRL-RB-WP-TR-2011-3040), other studies have given little consideration to failure. This work studies the effect of common nonlinearities on the failure (and failure margins) of components that undergo durability testing in dynamic environments. This context differs from many engineering applications because one usually assumes that any nonlinearities have been fully exercised during the test.

More Details

Biomass pretreatment with distillable ionic liquids for an effective recycling and recovery approach

Chemical Engineering Journal

Achinivu, Ezinne C.; Blankenship, Brian W.; Baral, Nawa R.; Choudhary, Hemant; Kakumanu, Ramu; Mohan, Mood; Baidoo, Edward E.K.; George, Anthe G.; Simmons, Blake A.; Gladden, John M.

Ionic liquid (IL) pretreatment methods show incredible promise for the efficient conversion of lignocellulosic feedstocks to fuels and chemicals. Given their low vapor pressures, distillation-based methods of extracting ionic liquids out of biomass post-pretreatment have historically been ignored in favor of alternative methods. We demonstrate a process to distill four acetate-based ionic liquids ([EthA][OAc], [PropA][OAc], [MAEthA][OAc], and [DMAEthA][OAc]) at low pressure and high purity that overcome some disadvantages of “water washing” and “one pot” recovery methods. Out of four tested ILs, ethanolamine acetate ([EthA][OAc]) is shown to have the most agreeable conversion metrics for commercial bioconversion processes achieving 73.6 % and 51.4 % of theoretical glucose and xylose yields respectively and >85 % recovery rates. Our process metrics are factored into a techno-economic analysis where [EthA][OAc] distillation is compared to other recovery methods as well as ethanolamine pretreatment at both milliliter and liter scales. Although our TEA shows [EthA][OAc] distillation underperforming against other processes, we show a step-by-step avenue to reduce sugar production cost below the wholesale dextrose price at scale.

More Details

MASK4 Test Report

Forbush, Dominic D.; Coe, Ryan G.; Donnelly, Timothy; Bacelli, Giorgio B.; Gallegos-Patterson, D.; Spinneken, Johannes; Lee, Jantzen; Crandell, Robert C.; Dullea, Kevin

Wave energy converters (WECs) are designed to produce useful work from ocean waves. This useful work can take the form of electrical power or even pressurized water for, e.g., desalination. This report details the findings from a wave tank test focused on that production of useful work. To that end, the experimental system and test were specifically designed to validate models for power transmission throughout the WEC system. Additionally, the validity of co-design informed changes to the power take-off (PTO) were assessed and shown to provide the expected improvements in system performance.

More Details

Statistical mechanical model for crack growth

Physical Review E

Buche, Michael R.; Grutzik, Scott J.

Analytic relations that describe crack growth are vital for modeling experiments and building a theoretical understanding of fracture. Upon constructing an idealized model system for the crack and applying the principles of statistical thermodynamics, it is possible to formulate the rate of thermally activated crack growth as a function of load, but the result is analytically intractable. Here, an asymptotically correct theory is used to obtain analytic approximations of the crack growth rate from the fundamental theoretical formulation. These crack growth rate relations are compared to those that exist in the literature and are validated with respect to Monte Carlo calculations and experiments. The success of this approach is encouraging for future modeling endeavors that might consider more complicated fracture mechanisms, such as inhomogeneity or a reactive environment.

More Details

A Stochastic Calculus Approach to Boltzmann Transport

Nuclear Science and Engineering

Smith, John D.; Lehoucq, Richard B.; Franke, Brian C.

Traditional Monte Carlo methods for particle transport utilize source iteration to express the solution, the flux density, of the transport equation as a Neumann series. Our contribution is to show that the particle paths simulated within source iteration are associated with the adjoint flux density and the adjoint particle paths are associated with the flux density. We make our assertion rigorous through the use of stochastic calculus by representing the particle path used in source iteration as a solution to a stochastic differential equation (SDE). The solution to the adjoint Boltzmann equation is then expressed in terms of the same SDE, and the solution to the Boltzmann equation is expressed in terms of the SDE associated with the adjoint particle process. An important consequence is that the particle paths used within source iteration simultaneously provide Monte Carlo samples of the flux density and adjoint flux density in the detector and source regions, respectively. The significant practical implication is that particle trajectories can be reused to obtain both forward and adjoint quantities of interest. To the best our knowledge, the reuse of entire particles paths has not appeared in the literature. Monte Carlo simulations are presented to support the reuse of the particle paths.

More Details

Accelerating FEM-Based Corrosion Predictions Using Machine Learning

Journal of the Electrochemical Society

Montes de Oca Zapiain, David M.; Maestas, Demitri M.; Roop, Matthew; Noell, Philip N.; Melia, Michael A.; Katona, Ryan M.

Highlights Novel protocol for extracting knowledge from previously performed Finite Element corrosion simulations using machine learning. Obtain accurate predictions for corrosion current 5 orders of magnitude faster than Finite Element simulations. Accurate machine learning based model capable of performing an effective and efficient search over the multi-dimensional input space to identify areas/zones where corrosion is more (or less) noticeable.

More Details

How Climate and Data Quality Impact Photovoltaic Performance Loss Rate Estimations

Solar RRL

Theristis, Marios; Anderson, Kevin; Ascencio-Vasquez, Julian; Stein, Joshua S.

Different data pipelines and statistical methods are applied to photovoltaic (PV) performance datasets to quantify the performance loss rate (PLR). Since the real values of PLR are unknown, a variety of unvalidated values are reported. As such, the PV industry commonly assumes PLR based on statistically extracted ranges from the literature. However, the accuracy and uncertainty of PLR depend on several parameters including seasonality, local climatic conditions, and the response of a particular PV technology. In addition, the specific data pipeline and statistical method used affect the accuracy and uncertainty. To provide insights, a framework of (≈200 million) synthetic simulations of PV performance datasets using data from different climates is developed. Time series with known PLR and data quality are synthesized, and large parametric studies are conducted to examine the accuracy and uncertainty of different statistical approaches over the contiguous US, with an emphasis on the publicly available and “standardized” library, RdTools. In the results, it is confirmed that PLRs from RdTools are unbiased on average, but the accuracy and uncertainty of individual PLR estimates vary with climate zone, data quality, PV technology, and choice of analysis workflow. Best practices and improvement recommendations based on the findings of this study are provided.

More Details

Demonstration of Output Weighting in MIMO Control

Conference Proceedings of the Society for Experimental Mechanics Series

Schultz, Ryan S.

Multiple-input/multiple-output (MIMO) vibration control often relies on a least-squares solution utilizing a matrix pseudo-inverse. While this is simple and effective for many cases, it lacks flexibility in assigning preference to specific control channels or degrees of freedom (DOFs). For example, the user may have some DOFs where accuracy is very important and other DOFs where accuracy is less important. This chapter shows a method for assigning weighting to control channels in the MIMO vibration control process. These weights can be constant or frequency-dependent functions depending on the application. An algorithm is presented for automatically selecting DOF weights based on a frequency-dependent data quality metric to ensure the control solution is only using the best, linear data. An example problem is presented to demonstrate the effectiveness of the weighted solution.

More Details

Decentralized Reactive Power Control in Distribution Grids With Unknown Reactance Matrix

IEEE Open Access Journal of Power and Energy

Ye, Lintao; Kosaraju, Krishna C.; Gupta, Vijay; Trevizan, Rodrigo D.; Byrne, Raymond H.; Chalamala, Babu C.

We consider the problem of decentralized control of reactive power provided by distributed energy resources for voltage support in the distribution grid. We assume that the reactance matrix of the grid is unknown and potentially time-varying. We present a decentralized adaptive controller in which the reactive power at each inverter is set using a potentially heterogeneous droop curve and analyze the stability and the steady-state error of the resulting system. The effectiveness of the controller is validated in simulations using a modified version of the IEEE 13-bus and a 8500-node test system.

More Details

Measuring the robustness of predictive probability for early stopping in two-group comparisons

Journal of Quality Technology

Ries, Daniel R.; Sieck, Victoria R.C.; Jones, Philip A.; Shaffer, Julie

Physical experiments are often expensive and time-consuming. Test engineers must certify the compatibility of aircraft and their weapon systems before they can be deployed in the field, but the testing required is time consuming, expensive, and resource limited. Adopting Bayesian adaptive designs is a promising way to borrow from the successes seen in the clinical trials domain. The use of predictive probability (PP) to stop testing early and make faster decisions is particularly appealing given the aforementioned constraints. Given the high-consequence nature of the tests performed in the national security space, a strong understanding of new methods is required before being deployed. Although PP has been thoroughly studied for binary data, there is less work with continuous data, where many reliability studies are interested in certifying the specification limits of components. A simulation study evaluating the robustness of this approach indicates early stopping based on PP is reasonably robust to minor assumption violations, especially when only a few interim analyses are conducted. The simulation study also compares PP to conditional power, showing its relative strengths and weaknesses. A post-hoc analysis exploring whether release requirements of a weapon system from an aircraft are within specification with desired reliability resulted in stopping the experiment early and saving 33% of the experimental runs.

More Details

Plenoptic Background Oriented Schlieren Imaging

Coded Optical Imaging

Munz, Elise D.; Davis, Jenna; Guildenbecher, Daniel R.; Thurow, Brian

Plenoptic background-oriented schlieren is a diagnostictechnique that enables the measure-ment of three-dimensional refractive gradients by a combination of background-oriented schlieren and a plenoptic light field camera. This plenoptic camera is a modification of a traditional camera via the insertion of an array of microlenses between the imaging lens and digital sensor. This allows the collection of both spatial and angular information on the incoming light rays and therefore provides three-dimensional information about the imaged scene. Background-oriented schlieren requires a relatively simple experimental configurationincludingonlyacameraviewing a patterned background through the density field of interest. By using a plenoptic camera to capture background-oriented schlieren images the optical distortion created by density gradients in three dimensions can be measured. This chapter is intended to review critical developments in plenoptic background-oriented schlieren imaging and provide an outlook for future applications of this measurement technique.

More Details

Predicting EBW detonator failure using DSC data

Journal of Thermal Analysis and Calorimetry

Hobbs, Michael L.

Exploding bridgewire detonators (EBWs) containing pentaerythritol tetranitrate (PETN) exposed to high temperatures may not function following discharge of the design electrical firing signal from a charged capacitor. Knowing functionality of these arbitrarily facing EBWs is crucial when making safety assessments of detonators in accidental fires. Orientation effects are only significant when the PETN is partially melted. Here, the melting temperature can be measured with a differential scanning calorimeter. Nonmelting EBWs will be fully functional provided the detonator never exceeds 406 K (133 °C) for at least 1 h. Conversely, EBWs will not be functional once the average input pellet temperature exceeds 414 K (141 °C) for a least 1 min which is long enough to cause the PETN input pellet to completely melt. Functionality of the EBWs at temperatures between 406 and 414 K will depend on orientation and can be predicted using a stratification model for downward facing detonators but is more complex for arbitrary orientations. A conservative rule of thumb would be to assume that the EBWs are fully functional unless the PETN input pellet has completely melted.

More Details

CO2 adsorption mechanisms at the ZIF-8 interface in a Type 3 porous liquid

Journal of Molecular Liquids

Rimsza, Jessica R.; Hurlock, Matthew H.; Nenoff, T.M.; Christian, Matthew S.

Porous liquids (PLs) are an attractive material for gas separation and carbon sequestration due to their permanent internal porosity and high adsorption capacity. PLs that contain zeolitic imidazole frameworks (ZIFs), such as ZIF-8, form PLs through exclusion of aqueous solvents from the framework pore due to its hydrophobicity. The gas adsorption sites in ZIF-8 based PLs are historically unknown; gas molecules could be captured in the ZIF-8 pore or adsorb at the ZIF-8 interface. To address this question, ab initio molecular dynamics was used to predict CO2 binding sites in a PL composed of a ZIF-8 particle solvated in a water, ethylene glycol, and 2-methylimidazole solvent system. Further, the results show that CO2 energetically prefers to reside inside the ZIF-8 pore aperture due to strong van der Waals interactions with the terminal imidazoles. However, the CO2 binding site can be blocked by larger solvent molecules that have greater adsorption interactions. CO2 molecules were unable to diffuse into the ZIF-8 pore, with CO2 adsorption occurring due to binding with the ZIF-8 surface. Therefore, future design of ZIF-based PLs for enhanced CO2 adsorption should be based on the strength of gas binding at the solvated particle surface.

More Details

Accurate equation of state of H2He binary mixtures up to 5.4 GPa

Physical Review. B

Clay III, Raymond C.; Duwal, Sakun D.; Seagle, Christopher T.; Zoller, Charlie M.; Hemley, Russell J.; Ryu, Young J.; Tkachev, Sergey; Prakapenka, Vitali; Ahart, Muhtar

Brillouin scattering spectroscopy has been used to obtain an accurate (<1%) ρ-P equation of state (EOS) of 1:1 and 9:1 H2-He molar mixtures from 0.5 to 5.4 GPa at 296 K. Our calculated equations of state indicate close agreement with the experimental data right to the freezing pressure of hydrogen at 5.4 GPa. The measured velocities agree on average, within 0.5%, of an ideal mixing model. The ρ-P EOSs presented have a standard deviation of under 0.3% from the measured densities and under 1% deviation from ideal mixing. Furthermore, a detailed discussion of the accuracy, precision, and sources of error in the measurement and analyses of our equations of state is presented.

More Details

Applying Sensor-Based Phase Identification With AMI Voltage in Distribution Systems

IEEE Access

Blakely, Logan; Reno, Matthew J.; Azzolini, Joseph A.; Jones, Christian B.; Nordy, David

Accurate distribution system models are becoming increasingly critical for grid modernization tasks, and inaccurate phase labels are one type of modeling error that can have broad impacts on analyses using the distribution system models. This work demonstrates a phase identification methodology that leverages advanced metering infrastructure (AMI) data and additional data streams from sensors (relays in this case) placed throughout the medium-voltage sector of distribution system feeders. Intuitive confidence metrics are employed to increase the credibility of the algorithm predictions and reduce the incidence of false-positive predictions. The method is first demonstrated on a synthetic dataset under known conditions for robustness testing with measurement noise, meter bias, and missing data. Then, four utility feeders are tested, and the algorithm’s predictions are proven to be accurate through field validation by the utility. Lastly, the ability of the method to increase the accuracy of simulated voltages using the corrected model compared to actual measured voltages is demonstrated through quasi-static time-series (QSTS) simulations. The proposed methodology is a good candidate for widespread implementation because it is accurate on both the synthetic and utility test cases and is robust to measurement noise and other issues.

More Details

Large Destabilization of (TiVNb)-Based Hydrides via (Al, Mo) Addition: Insights from Experiments and Data-Driven Models

ACS Applied Energy Materials

Pineda Romero, Nayely; Witman, Matthew; Harvey, Kim R.; Stavila, Vitalie S.; Nassif, Vivian; Elkaim, Erik; Zlotea, Claudia

High-entropy alloys (HEAs) represent an interesting alloying strategy that can yield exceptional performance properties needed across a variety of technology applications, including hydrogen storage. Examples include ultrahigh volumetric capacity materials (BCC alloys → FCC dihydrides) with improved thermodynamics relative to conventional high-capacity metal hydrides (like MgH2), but still further destabilization is needed to reduce operating temperature and increase system-level capacity. In this work, we demonstrate efficient hydride destabilization strategies by synthesizing two new Al0.05(TiVNb)0.95-xMox (x = 0.05, 0.10) compositions. We specifically evaluate the effect of molybdenum (Mo) addition on the phase structure, microstructure, hydrogen absorption, and desorption properties. Both alloys crystallize in a bcc structure with decreasing lattice parameters as the Mo content increases. The alloys can rapidly absorb hydrogen at 25 °C with capacities of 1.78 H/M (2.79 wt %) and 1.79 H/M (2.75 wt %) with increasing Mo content. Pressure-composition isotherms suggest a two-step reaction for hydrogen absorption to a final fcc dihydride phase. The experiments demonstrate that increasing Mo content results in a significant hydride destabilization, which is consistent with predictions from a gradient boosting tree data-driven model for metal hydride thermodynamics. Furthermore, improved desorption properties with increasing Mo content and reversibility were observed by in situ synchrotron X-ray diffraction, in situ neutron diffraction, and thermal desorption spectroscopy.

More Details

Performance assessment for climate intervention (PACI): preliminary application to a stratospheric aerosol injection scenario

Frontiers in Environmental Science

Wheeler, Lauren B.; Zeitler, Todd Z.; Brunell, Sarah B.; Lien, Jessica; Shand, Lyndsay S.; Wagman, Benjamin M.; Roesler, Erika L.; Martinez, Carianne M.; Potter, Kevin M.

As the prospect of exceeding global temperature targets set forth in the Paris Agreement becomes more likely, methods of climate intervention are increasingly being explored. With this increased interest there is a need for an assessment process to understand the range of impacts across different scenarios against a set of performance goals in order to support policy decisions. The methodology and tools developed for Performance Assessment (PA) for nuclear waste repositories shares many similarities with the needs and requirements for a framework for climate intervention. Using PA, we outline and test an evaluation framework for climate intervention, called Performance Assessment for Climate Intervention (PACI) with a focus on Stratospheric Aerosol Injection (SAI). We define a set of key technical components for the example PACI framework which include identifying performance goals, the extent of the system, and identifying which features, events, and processes are relevant and impactful to calculating model output for the system given the performance goals. Having identified a set of performance goals, the performance of the system, including uncertainty, can then be evaluated against these goals. Using the Geoengineering Large Ensemble (GLENS) scenario, we develop a set of performance goals for monthly temperature, precipitation, drought index, soil water, solar flux, and surface runoff. The assessment assumes that targets may be framed in the context of risk-risk via a risk ratio, or the ratio of the risk of exceeding the performance goal for the SAI scenario against the risk of exceeding the performance goal for the emissions scenario. From regional responses, across multiple climate variables, it is then possible to assess which pathway carries lower risk relative to the goals. The assessment is not comprehensive but rather a demonstration of the evaluation of an SAI scenario. Future work is needed to develop a more complete assessment that would provide additional simulations to cover parametric and aleatory uncertainty and enable a deeper understanding of impacts, informed scenario selection, and allow further refinements to the approach.

More Details

pvlib python: 2023 project update

Journal of Open Source Software

Anderson, Kevin; Hansen, Clifford H.; Holmgren, William F.; Mikofski, Mark A.; Jensen, Adam R.; Driesse, Anton

pvlib python is a community-developed, open-source software toolbox for simulating the performance of solar photovoltaic (PV) energy components and systems. It provides reference implementations of over 100 empirical and physics-based models from the peer-reviewed scientific literature, including solar position algorithms, irradiance models, thermal models, and PV electrical models. In addition to individual low-level model implementations, pvlib python provides high-level workflows that chain these models together like building blocks to form complete “weather-to-power” photovoltaic system models. It also provides functions to fetch and import a wide variety of weather datasets useful for PV modeling. pvlib python has been developed since 2013 and follows modern best practices for open-source python software, with comprehensive automated testing, standards-based packaging, and semantic versioning. Its source code is developed openly on GitHub and releases are distributed via the Python Package Index (PyPI) and the conda-forge repository. pvlib python’s source code is made freely available under the permissive BSD-3 license. Here we (the project’s core developers) present an update on pvlib python, describing capability and community development since our 2018 publication (Holmgren, Hansen, & Mikofski, 2018).

More Details

Passive and active neutron signatures of 233U for nondestructive assay

Physical Review Applied

Searfus, Oskar F.; Marleau, Peter M.; Uribe, Eva U.; Reedy, Heather A.; Jovanovic, Igor

The thorium fuel cycle is emerging as an attractive alternative to conventional nuclear fuel cycles, as it does not require the enrichment of uranium for long-term sustainability. The operating principle of this fuel cycle is the irradiation of 232Th to produce 233U, which is fissile and sustains the fission chain reaction. 233U poses unique challenges for nuclear safeguards, as it is associated with a uniquely extreme γ-ray environment from 232U contamination, which limits the feasibility of the γ-ray-based assay, as well as more conservative accountability requirements than for 235U set by the International Atomic Energy Agency. Consequently, instrumentation used for safeguarding 235U in traditional fuel cycles may be inapplicable. It is essential that the nondestructive signatures of 233U be characterized so that nuclear safeguards can be applied to thorium fuel-cycle facilities as they come online. In this work, a set of 233U3O8 plates, containing 984 g233U, was measured at the National Criticality Experiments Research Center. A high-pressure 4He gaseous scintillation detector, which is insensitive to γ-rays, was used to perform a passive fast neutron spectral signature measurement of 233U3O8, and was used in conjunction with a pulsed deuterium-tritium neutron generator to demonstrate the differential die-away signature of this material. Furthermore, an array of 3He detectors was used in conjunction with the same neutron generator to measure the delayed neutron time profile of 233U, which is unique to this nuclide. These measurements provide a benchmark for future nondestructive assay instrumentation development, and demonstrate a set of key neutron signatures to be leveraged for nuclear safeguards in the thorium fuel cycle.

More Details

Quantifying uncertainty in analysis of shockless dynamic compression experiments on platinum. I. Inverse Lagrangian analysis

Journal of Applied Physics

Davis, Jean-Paul D.; Brown, Justin L.

Absolute measurements of solid-material compressibility by magnetically driven shockless dynamic compression experiments to multi-megabar pressures have the potential to greatly improve the accuracy and precision of pressure calibration standards for use in diamond anvil cell experiments. To this end, we apply characteristics-based inverse Lagrangian analysis (ILA) to 11 sets of ramp-compression data on pure platinum (Pt) metal and then reduce the resulting weighted-mean stress-strain curve to the principal isentrope and room-temperature isotherm using simple models for yield stress and Grüneisen parameter. We introduce several improvements to methods for ILA and quasi-isentrope reduction, the latter including calculation of corrections in wave speed instead of stress and pressure to render results largely independent of initial yield stress while enforcing thermodynamic consistency near zero pressure. More importantly, we quantify in detail the propagation of experimental uncertainty through ILA and model uncertainty through quasi-isentrope reduction, considering all potential sources of error except the electrode and window material models used in ILA. Compared to previous approaches, we find larger uncertainty in longitudinal stress. Monte Carlo analysis demonstrates that uncertainty in the yield-stress model constitutes by far the largest contribution to uncertainty in quasi-isentrope reduction corrections. We present a new room-temperature isotherm for Pt up to 444 GPa, with 1-sigma uncertainty at that pressure of just under ± 1.2 % ; the latter is about a factor of three smaller than uncertainty previously reported for multi-megabar ramp-compression experiments on Pt. The result is well represented by a Vinet-form compression curve with (isothermal) bulk modulus K 0 = 270.3 ± 3.8 GPa, pressure derivative K 0 ′ = 5.66 ± 0.10 , and correlation coefficient R K 0 , K 0 ′ = − 0.843 .

More Details

Pressure-based process monitoring of direct-ink write material extrusion additive manufacturing

Additive Manufacturing

Kopatz, Jessica W.; Reinholtz, William; Cook, Adam W.; Tappan, Alexander S.; Grillet, Anne M.

As additive manufacturing (AM) has become a reliable method for creating complex and unique hardware rapidly, the quality assurance of printed parts remains a priority. In situ process monitoring offers an approach for performing quality control while simultaneously minimizing post-production inspection. For extrusion printing processes, direct linkages between extrusion pressure fluctuations and print defects can be established by integrating pressure sensors onto the print head. In this work, the sensitivity of process monitoring is tested using engineered spherical defects. Pressure and force sensors located near an ink reservoir and just before the nozzle are shown to assist in identification of air bubbles, changes in height between the print head and build surface, clogs, and particle aggregates with a detection threshold of 60–70% of the nozzle diameter. Visual evidence of printed bead distortion is quantified using optical image analysis and correlated to pressure measurements. Importantly, this methodology provides an ability to monitor the quality of AM parts produced by extrusion printing methods and can be accomplished using commonly available pressure-sensing equipment.

More Details
Results 326–350 of 96,771
Results 326–350 of 96,771