Challenging the Limits Surrounding the Adoption of AI-Guided Manufacturing for Materials Reliability
Abstract not provided.
Abstract not provided.
The Sandia National Laboratories site sustainability plan and its associated DOE Sustainability Dashboard data entries encompass Sandia National Laboratories contributions toward meeting the DOE sustainability goals. This site sustainability plan fulfills the contractual requirement for National Technology & Engineering Solutions of Sandia, LLC, the management and operating contractor for Sandia National Laboratories, to deliver an annual sustainability plan to the DOE National Nuclear Security Administration Sandia Field Office.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report examines the localization of high frequency electromagnetic fields in general three-dimensional cavities along periodic paths between opposing sides of the cavity. The focus is on the case where the mirrors at the ends of the orbit are concave and have two different radii of curvature. The cases where these orbits lead to unstable localized modes are known as scars. The ellipsoidal coordinate system is utilized in the construction of the scarred modes. The field at the interior foci is examined as well as trigonometric projections along the periodic scarred ray path.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Renewable Energy
Photovoltaic (PV) performance is affected by reversible and irreversible losses. These can typically be mitigated through responsive and proactive operations and maintenance (O&M) activities. However, to generate profit, the cost of O&M must be lower than the value of the recovered electricity. This value depends both on the amount of recovered energy and on the electricity prices, which can vary significantly over time in spot markets. The present work investigates the impact of the electricity price variability on the PV profitability and on the related O&M activities in Italy, Portugal, and Spain. It is found that the PV revenues varied by 1.6 × to 1.8 × within the investigated countries in the last 5 years. Moreover, forecasts predict higher average prices in the current decade compared to the previous one. These will increase the future PV revenues by up to 60% by 2030 compared to their 2015–2020 mean values. These higher revenues will make more funds available for better maintenance and for higher quality components, potentially leading to even higher energy yield and profits. Linearly growing or constant price assumptions cannot fully reproduce these expected price trends. Furthermore, significant price fluctuations can lead to unexpected scenarios and alter the predictions.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Numerical Methods for Partial Differential Equations
Fractional equations have become the model of choice in several applications where heterogeneities at the microstructure result in anomalous diffusive behavior at the macroscale. In this work we introduce a new fractional operator characterized by a doubly-variable fractional order and possibly truncated interactions. Under certain conditions on the model parameters and on the regularity of the fractional order we show that the corresponding Poisson problem is well-posed. We also introduce a finite element discretization and describe an efficient implementation of the finite-element matrix assembly in the case of piecewise constant fractional order. Through several numerical tests, we illustrate the improved descriptive power of this new operator across media interfaces. Furthermore, we present one-dimensional and two-dimensional h-convergence results that show that the variable-order model has the same convergence behavior as the constant-order model.
Earth and Planetary Science Letters
Viscoelastic rebound of the solid Earth upon the removal of ice loads has the potential to inhibit marine ice sheet instability, thereby forestalling ice-sheet retreat and global mean sea-level rise. The timescale over which the solid Earth - ice sheet system responds to changes in ice thickness and bedrock topography places a strong control on the spatiotemporal influence of this negative feedback mechanism. In this study, we assess the impact of solid-earth rheological structure on model projections of the retreat of Thwaites Glacier, West Antarctica, and the concomitant sea-level rise by coupling the dynamic ice sheet model MALI to a regional glacial isostatic adjustment (GIA) model. We test the sensitivity of model projections of ice-sheet retreat and associated sea-level rise across a range of four different solid-earth rheologies, forced by standard ISMIP6 ocean and atmospheric datasets for the RCP8.5 climate scenario. These model parameters are applied to 500-year, coupled ice-sheet - GIA simulations. For the mantle viscosity best supported by observations, the negative GIA feedback leads to a reduction in mass loss that remains above 20% after about a hundred years. Mass-loss reduction peaks at 50% around 2300, which is when a control simulation without GIA experiences its maximum rate of retreat. For a weaker solid-earth rheology that is unlikely but compatible with observational uncertainty, mass loss reduction remains above 50% after 2150. At 2100, mass loss reduction is 10% for the best-fit rheology and 25% for the weakest rheology. At the same time, we estimate that water expulsion from the rebounding solid Earth beneath the ocean near Thwaites Glacier may increase sea-level rise by up to 20% at five centuries. Additionally, the reduction in ice-sheet retreat caused by GIA is substantially reduced under stronger climate forcings, suggesting that the stabilizing feedback of GIA will also be an indirect function of emissions scenario. We hypothesize that feedbacks between the solid Earth - ice sheet system are controlled by a competition between the spatial extent and timescale of bedrock uplift relative to the rate of grounded ice retreat away from the region of most rapid unloading. Although uncertainty in solid-earth rheology leads to large uncertainty in future sea-level rise contribution from Thwaites Glacier, under all plausible parameters the GIA effects are too large to be ignored for future projections of Thwaites Glacier of more than a century.
Abstract not provided.