2022 Fall Leadership Forum Presentation
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Advances in Water Resources
Geologic Disposal Safety Assessment Framework is a state-of-the-art simulation software toolkit for probabilistic post-closure performance assessment of systems for deep geologic disposal of nuclear waste developed by the United States Department of Energy. This paper presents a generic reference case and shows how it is being used to develop and demonstrate performance assessment methods within the Geologic Disposal Safety Assessment Framework that mitigate some of the challenges posed by high uncertainty and limited computational resources. Variance-based global sensitivity analysis is applied to assess the effects of spatial heterogeneity using graph-based summary measures for scalar and time-varying quantities of interest. Behavior of the system with respect to spatial heterogeneity is further investigated using ratios of water fluxes. This analysis shows that spatial heterogeneity is a dominant uncertainty in predictions of repository performance which can be identified in global sensitivity analysis using proxy variables derived from graph descriptions of discrete fracture networks. New quantities of interest defined using water fluxes proved useful for better understanding overall system behavior.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Soil Science Society of America Journal
Accurate representation of environmental controllers of soil organic carbon (SOC) stocks in Earth System Model (ESM) land models could reduce uncertainties in future carbon–climate feedback projections. Using empirical relationships between environmental factors and SOC stocks to evaluate land models can help modelers understand prediction biases beyond what can be achieved with the observed SOC stocks alone. In this study, we used 31 observed environmental factors, field SOC observations (n = 6,213) from the continental United States, and two machine learning approaches (random forest [RF] and generalized additive modeling [GAM]) to (a) select important environmental predictors of SOC stocks, (b) derive empirical relationships between environmental factors and SOC stocks, and (c) use the derived relationships to predict SOC stocks and compare the prediction accuracy of simpler model developed with the machine learning predictions. Out of the 31 environmental factors we investigated, 12 were identified as important predictors of SOC stocks by the RF approach. In contrast, the GAM approach identified six (of those 12) environmental factors as important controllers of SOC stocks: potential evapotranspiration, normalized difference vegetation index, soil drainage condition, precipitation, elevation, and net primary productivity. The GAM approach showed minimal SOC predictive importance of the remaining six environmental factors identified by the RF approach. Our derived empirical relations produced comparable prediction accuracy to the GAM and RF approach using only a subset of environmental factors. The empirical relationships we derived using the GAM approach can serve as important benchmarks to evaluate environmental control representations of SOC stocks in ESMs, which could reduce uncertainty in predicting future carbon–climate feedbacks.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Renewable Energy
Photovoltaic (PV) performance is affected by reversible and irreversible losses. These can typically be mitigated through responsive and proactive operations and maintenance (O&M) activities. However, to generate profit, the cost of O&M must be lower than the value of the recovered electricity. This value depends both on the amount of recovered energy and on the electricity prices, which can vary significantly over time in spot markets. The present work investigates the impact of the electricity price variability on the PV profitability and on the related O&M activities in Italy, Portugal, and Spain. It is found that the PV revenues varied by 1.6 × to 1.8 × within the investigated countries in the last 5 years. Moreover, forecasts predict higher average prices in the current decade compared to the previous one. These will increase the future PV revenues by up to 60% by 2030 compared to their 2015–2020 mean values. These higher revenues will make more funds available for better maintenance and for higher quality components, potentially leading to even higher energy yield and profits. Linearly growing or constant price assumptions cannot fully reproduce these expected price trends. Furthermore, significant price fluctuations can lead to unexpected scenarios and alter the predictions.
A collection of x-ray computed tomography scans of candy.
Abstract not provided.
Abstract not provided.