Publications

Results 92401–92600 of 99,299

Search results

Jump to search filters

Incremental Risks of Transporting NARM to the LLW Disposal Facility at Hanford

Weiner, Ruth F.

This study models the incremental radiological risk of transporting NARM to the Hanford commercial LLW facility, both for incident-free transportation and for possible transportation accidents, compared with the radiological risk of transporting LLW to that facility. Transportation routes are modeled using HIGHWAY 3.1 and risks are modeled using RADTRAN 4. Both annual population doses and risks, and annual average individual doses and risks are reported. Three routes to the Hanford site were modeled from Albany, OR, from Coeur d'Alene, ID (called the Spokane route), and from Seattle, WA. Conservative estimates are used in the RADTRAN inputs, and RADTRAN itself is conservative.

More Details

A Parametric Analysis of Solidification in Y(Fe,Ni,Cr)-Nb-C Alloys

Scripta Materialia

Robino, Charles V.

A parametric analysis is presented which summarizes the amount of total ({gamma}/NbC + {gamma}/Laves) and individual {gamma}/NbC and {gamma}/Laves constituents which form during solidification of {gamma}{sub (Fe,Ni,Cr)} alloys with variations in nominal Nb and C contents. Calculated results are presented for Fe base alloys and Ni base alloys. The results provide a quantitative rationale for understanding the relation between alloy composition and solidification microstructures and should provide useful insight into commercial alloys of similar composition.

More Details

Solder Contamination

Welding Journal

Vianco, Paul T.

There are two sources of contamination in solder alloys. The first source is trace elements from the primary metals used in the as-manufactured product, be that product in ingot, wire, or powder form. Their levels in the primary metal are determined by the refining process. While some of these trace elements are naturally occurring materials, additional contamination can result from the refining and/or forming processes. Sources include: furnace pot liners, debris on the cutting edges of shears, rolling mill rollers, etc. The types and levels of contaminants per solder alloy are set by recognized industrial, federal, military, and international specifications. For example, the 63Sn-37Pb solder purchased to the ASTM B 32 standard can have maximum levels of contamination for the following metals: 0.08(wt.)%Cu, 0.001 %Cd, 0.005%Al, 0.25%Bi, 0.03%As, 0.02%Fe, and 0.005 %Zn. A second cause of contamination in solders, and solder baths in particular, is their actual use in soldering operations. Each time a workpiece is introduced into the bath, some dissolution of the joint base metal(s), protective or solderable coatings, and fixture metal takes place which adds to contamination levels in the solder. The potential impurities include Cu; Ni; Au or other noble metals used as protective finishes and Al; Fe; and Zn to name a few. Even dissolution of the pot wall or liner is a source of impurities, typically Fe.

More Details

The Design Process of Physical Security as Applied to a U.S. Border Port of Entry

Wagner, George G.

This paper details the application of a standard physical security system design process to a US Border Port of Entry (PoE) for vehicle entry/exit. The physical security design methodology is described as well as the physical security similarities to facilities currently at a US Border PoE for vehicles. The physical security design process description includes the various elements that make up the methodologies well as the considerations that must be taken into account when dealing with system integration of those elements. The distinctions between preventing unlawful entry/exit of illegal contraband and personnel are described. The potential to enhance the functions of drug/contraband detection in the Pre-Primary Inspection area through the application of emerging technologies are also addressed.

More Details

Shortest Path Planning for a Tethered Robot or an Anchored Cable

Xavier, Patrick G.

We consider the problem of planning shortest paths for a tethered robot with a finite length tether in a 2D environment with polygonal obstacles. We present an algorithm that runs in time O((k{sub 1} + 1){sup 2}n{sup 4}) and finds the shortest path or correctly determines that none exists that obeys the constraints; here n is the number obstacle vertices, and k{sub 1} is the number loops in the initial configuration of the tether. The robot may cross its tether but nothing can cross obstacles, which cause the tether to bend. The algorithm applies as well for planning a shortest path for the free end of an anchored cable.

More Details

Design and Testing of Metal and Silicon Heat Spreaders with Embedded Micromachined Heat Pipes

Benson, D.A.

The authors have developed a new type of heat spreader based on the integration of heat pipes directly within a thin planar structure suitable for use as a heat spreader or as the base layer in a substrate. The process uses micromachining methods to produce micron scale patterns that act as a wick in these small scale heat pipes. By using silicon or a low expansion metal as the wall material of these spreaders, they achieve a good match to the thermal coefficient of expansion of the die. The match allows the use of a thin high performance die attachment even on large size die. The embedded heat pipes result in high effective thermal conductivity for the new spreader technology.

More Details

Environmental Measurement While Drilling System for Real-Time Field Screening of Contaminants

Williams, Cecelia V.

Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of subsurface contaminants. However, analysis of the samples is expensive and time-consuming: off-site laboratory analysis can take weeks or months. Real-time information on environmental conditions, drill bit location and temperature during drilling is valuable in many environmental restoration operations. This type of information can be used to provide field screening data and improved efficiency of site characterization activities. The Environmental Measurement-While-Drilling (EMWD) System represents an innovative blending of new and existing technology in order to obtain real-time data during drilling. The system consists of two subsystems. The down-hole subsystem (at the drill bit) consists of sensors, a power supply, a signal conditioning and transmitter board, and a radio-frequency (RF) coaxial cable. The up-hole subsystem consists of a battery pack/coil, pickup coil, receiver, and personal computer. The system is compatible with fluid miser drill pipe, a directional drilling technique that uses minimal drilling fluids and generates little to no secondary waste. In EMWD, downhole sensors are located behind the drill bit and linked by a high-speed data transmission system to a computer at the surface. Sandia-developed Windows{trademark}-based software is used for data display and storage. As drilling is conducted, data is collected on the nature and extent of contamination, enabling on-the-spot decisions regarding drilling and sampling strategies. Initially, the downhole sensor consisted of a simple gamma radiation detector, a Geiger-Mueller tube (GMT). The design includes data assurance techniques to increase safety by reducing the probability of giving a safe indication when an unsafe condition exists. The EMWD system has been improved by the integration of a Gamma Ray Spectrometer (GRS) in place of the GMT. The GRS consists of a sodium iodide-thallium activated crystal coupled to a photomultiplier tube (PMT). The output of the PMT goes to a multichannel analyzer (MCA).The MCA data is transmitted to the surface via a signal conditioning and transmitter board similar to that used with the GMT. The EMWD system is described and the results of the GRS field tests and field demonstration are presented.

More Details

Integration and Evaluation of a Position Sensor with Continuous Read-Out for use with the Environmental Measurement-While-Drilling Gamma Ray Spectrometer System

Williams, Cecelia V.

The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides real-time environmental and drill bit data during drilling operations. The EMWD-GRS technology was demonstrated at Savannah River Site (SRS) F-Area Retention Basin. The EMWD-GRS technology demonstration consisted of continuously monitoring for gamma-radiation-producing contamination while drilling two horizontal boreholes below the backfilled waste retention basin. These boreholes passed near previously sampled locations where concentrations of contaminant levels of cesium had been measured. Contaminant levels continuously recorded by the EMWD-GRS system during drilling were compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples. The demonstration of the EMWD-GRS was a complete success. The results show general agreement between the soil sampling and EMWD-GRS techniques for CS-137. It was recognized that the EMWD-GRS tool would better satisfy our customers' needs if the instrument location could be continuously monitored. During the demonstration at SRS, an electromagnetic beacon with a walkover monitor (Subsite{reg_sign}) was used to measure bit location at depth. To use a beacon locator drilling must be stopped, thus it is normally only used when a new section of pipe was added. The location of contamination could only be estimated based on the position of the EMED-GRS package and the distance between locator beacon readings. A continuous location system that would allow us to know the location of each spectrum as it is obtained is needed.

More Details

Confidence Calculation with AMV+

AIAA Journal

Fossum, Arlo F.

The iterative advanced mean value algorithm (AMV+), introduced nearly ten years ago, is now widely used as a cost-effective probabilistic structural analysis tool when the use of sampling methods is cost prohibitive (Wu et al., 1990). The need to establish confidence bounds on calculated probabilities arises because of the presence of uncertainties in measured means and variances of input random variables. In this paper an algorithm is proposed that makes use of the AMV+ procedure and analytically derived probability sensitivities to determine confidence bounds on calculated probabilities.

More Details

Stress Corrosion Crack Detection on HU-25 Guardian Aircraft

Moore, David G.

Several ultrasonic inspection methods were developed at the Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) to easily and rapidly detect hidden stress corrosion cracks in all vertical windshield posts on the US Coast Guard (USCG) HU-25 Guardian aircraft. The inspection procedure locates cracks as small as 2.0 millimeters emanating from internal fastener holes and determines their length. A test procedure was developed and a baseline assessment of the USCG fleet was conducted. Inspection results on twenty-five aircraft revealed a good correlation with results made during subsequent structural disassembly and visual inspection.

More Details

High-Density Plasma Etching of Group-III Nitride Films for Device Application

Moore, David G.

As III-V nitride device structures become more complicated and design rules shrink, well-controlled etch processes are necessary. Due to limited wet chemical etch results for the group-III nitrides, a significant amount of effort has been devoted to the development of dry etch processing. Dry etch development was initially focused on mesa structures where high etch rates, anisotropic profiles, smooth sidewalls, and equi-rate etching of dissimilar materials were required. For example, commercially available LEDs and laser facets for GaN-based laser diodes have been patterned using reactive ion etching (RIE). With the recent interest in high power, high temperature electronic devices, etch characteristics may also require smooth surface morphology, low plasma-induced damage, and selective etching of one layer over another. The principal criteria for any plasma etch process is its utility in the fabrication of a device. In this study, we will report plasma etch results for the group-III nitrides and their application to device structures.

More Details

Correlation of Creep Behavior of Domal Salts

Munson, Darrell E.

The experimentally determined creep responses of a number of domal salts have been reported in, the literature. Some of these creep results were obtained using standard (conventional) creep tests. However, more typically, the creep data have come from multistage creep tests, where the number of specimens available for testing was small. An incremental test uses abrupt changes in stress and temperature to produce several time increments (stages) of different creep conditions. Clearly, the ability to analyze these limited data and to correlate them with each other could be of considerable potential value in establishing the mechanical characteristics of salt domes, both generally and specifically. In any analysis, it is necessary to have a framework of rules to provide consistency. The basis for the framework is the Multimechanism-Deformation (M-D) constitutive model. This model utilizes considerable general knowledge of material creep deformation to supplement specific knowledge of the material response of salt. Because the creep of salt is controlled by just a few micromechanical mechanisms, regardless of the origin of the salt, certain of the material parameters are values that can be considered universal to salt. Actual data analysis utilizes the methodology developed for the Waste Isolation Pilot Plant (WIPP) program, and the response of a bedded pure WIPP salt as the baseline for comparison of the domal salts. Creep data from Weeks Island, Bryan Mound, West Hackberry, Bayou Choctaw, and Big Hill salt domes, which are all sites of Strategic Petroleum Reserve (SPR) storage caverns, were analyzed, as were data from the Avery Island, Moss Bluff, and Jennings salt domes. The analysis permits the parameter value sets for the domal salts to be determined in terms of the M-D model with various degrees of completeness. In turn this permits detailed numerical calculations simulating cavern response. Where the set is incomplete because of the sparse database, reasonable assumptions permit the set to be completed. From the analysis, two distinct response groups were evident, with the salts of one group measurably more creep resistant than the other group. Interestingly, these groups correspond well with the indirectly determined creep closure of the SPR storage caverns, a correlation that probably should be expected. Certainly, the results suggest a simple laboratory determination of the creep characteristics of a salt material from a dome site can indicate the relative behavior of any potential cavern placed within that dome.

More Details

Microscale Flow Modeling in Geologic Materials

Physics and Chemistry of the Earth

Fredrich, Joanne T.

Three-dimensional imaging techniques, numerical methods for simulating flow and transport, and emergent computational architectures are combined to enable fundamental studies of fluid flow at the pore scale. High resolution reconstructions of porous media obtained using laser scanning confocal microscopy reduce sampling artifacts to sub-micron features, and simultaneously capture multiple grain length scales. However, the volumetric image data sets are extremely large, and there are significant computational challenges in utilizing this information effectively. The principal problem lies in the complexity of the geometry and the retention of this structure in numerical analyses. Lattice Boltzmann (LB) methods provide a direct means to simulate transport processes in complex geometric domains due to the unique ability to treat accurately and efficiently the multitude of discrete boundary conditions. LB methods are numerically explicit as formulated, and this characteristic is exploited through a mapping of the numerical domain to distributed computing architectures. These techniques are applied to perform single phase flow simulations in 3D data sets obtained from cores of Berea sandstone using confocal microscopy. Simulations are performed using both a purpose-built distributed processor computer and a massively parallel processer (MPP) platform.

More Details

Gravity-destabilized nonwetting phase invasion in macro-heterogeneous porous media: Experimental observations of invasion dynamics and scale analysis

Water Resources Research

Glass Jr., Robert J.; Conrad, Stephen H.; Peplinski, William J.

The authors designed and conducted experiments in a heterogeneous sand pack where gravity-destabilized nonwetting phase invasion (CO{sub 2} and TCE) could be recorded using high resolution light transmission methods. The heterogeneity structure was designed to be reminiscent of fluvial channel lag cut-and-fill architecture and contain a series of capillary barriers. As invasion progressed, nonwetting phase structure developed a series of fingers and pools; behind the growing front they found nonwetting phase saturation to pulsate in certain regions when viscous forces were low. Through a scale analysis, they derive a series of length scales that describe finger diameter, pool height and width, and regions where pulsation occurs within a heterogeneous porous medium. In all cases, they find that the intrinsic pore scale nature of the invasion process and resulting structure must be incorporated into the analysis to explain experimental results. The authors propose a simple macro-scale structural growth model that assembles length scales for sub-structures to delineate nonwetting phase migration from a source into a heterogeneous domain. For such a model applied at the field scale for DNAPL migration, they expect capillary and gravity forces within the complex subsurface lithology to play the primary roles with viscous forces forming a perturbation on the inviscid phase structure.

More Details

Effects of Accelerated Aging on Fiber Damage Thresholds

Setchell, Robert E.

Laser-induced damage mechanisms that can occur during high-intensity fiber transmission have been under study for a number of years. Our particular interest in laser initiation of explosives has led us to examine damage processes associated with the transmission of Q-switched, Nd:YAG pulses at 1.06 {micro}m through step-index, multimode, fused silica fiber. Laser breakdown at the fiber entrance face is often the first process to limit fiber transmission but catastrophic damage can also occur at either fiber end face, within the initial entry segment of the fiber, and at other internal sites along the fiber path. Past studies have examined how these various damage mechanisms depend upon fiber end-face preparation, fiber fixturing and routing, laser characteristics, and laser-to-fiber injection optics. In some applications of interest, however, a fiber transmission system may spend years in storage before it is used. Consequently, an important additional issue for these applications is whether or not there are aging processes that can result in lower damage thresholds over time. Fiber end-face contamination would certainly lower breakdown and damage thresholds at these surfaces, but careful design of hermetic seals in connectors and other end-face fixtures can minimize this possibility. A more subtle possibility would be a process for the slow growth of internal defects that could lead to lower thresholds for internal damage. In the current study, two approaches to stimulating the growth of internal defects were used in an attempt to produce observable changes in internal damage thresholds. In the first approach test fibers were subjected to a very high tensile stress for a time sufficient for some fraction to fail from static fatigue. In the second approach, test fibers were subjected to a combination of high tensile stress and large, cyclic temperature variations. Both of these approaches were rather arbitrary due to the lack of an established growth mechanism for internal defects. Damage characteristics obtained from fibers subjected to each of these aging environments were compared to results from fresh fibers tested under identical conditions. A surprising result was that internal damage was not observed in any of the tested fibers. Only breakdown at the fiber entrance face and catastrophic damage at both end faces were observed. Fiber end faces were not sealed during the accelerated aging environments, and thresholds at these faces were significantly lower in the aged fibers. However, most fibers transmitted relatively high pulse energies before damaging, and a large fraction never damaged before we reached the limits of our test laser. The absence of any observable affect on internal damage thresholds is encouraging, but the current results do not rule out the possibility that some other approach to accelerated aging could reveal a growth mechanism for internal defects.

More Details

Origin of the Time-Dependence of Wet Oxidation of AlGaAs

Applied Physics Letters

Allerman, A.A.; Ashby, C.I.H.; Bridges, M.M.; Hammons, B.E.; Hou, H.Q.

The time-dependence of the wet oxidation of high-Al-content AlGaAs can be either linear, indicating reaction-rate limitation, or parabolic, indicating diffusion-limited rates. The transition from linear to parabolic time dependence can be explained by the increased rate of the formation of intermediate As{sub 2}O{sub 3} vs. its reduction to elemental As. A steadily increasing thickness of the As{sub 2}O{sub 3}-containing region at the oxidation front will shift the process from the linear to the parabolic regime. This shift from reaction-rate-limited (linear) to diffusion-limited (parabolic) time dependence is favored by increasing temperature or increasing Al mole fraction.

More Details

Work Functions of the transition Metals and Metal Silicides

Journal of Applied Physics

Drummond, Timothy J.

The work functions of polycrystalline metals are often used to systematize Schottky barrier height data for rectifying contacts to semiconductors. Rectifying contacts to silicon devices are predominantly formed using conductive metal silicides with work functions which are not as well characterized as metal work functions. The present work has two objectives. First, it classifies the transition metals using correlations between the metal work function and the atomic chemical potential. Second, the available data for metal silicides is collected and interpreted using an average charge transfer (ACT) model. The ACT model accounts for the electronic hardness of the component elements in addition to their chemical potentials. New trends in the behavior of silicide work functions are identified.

More Details

Electric Field Induced Surface Modification of Au

Journal of Applied Physics

Drummond, Timothy J.

We discuss the role of localized high electric fields in the modification of Au surfaces with a W probe using the Interfacial Force Microscope. Upon bringing a probe close to a Au surface, we measure both the interfacial force and the field emission current as a function of separation with a constant potential of 100 V between tip and sample. The current initially increases exponentially as the separation decreases. However, at a distance of less than {approximately} 500{angstrom} the current rises sharply as the surface begins to distort and rapidly close the gap. Retraction of the tip before contact is made reveals the formation of a mound on the surface. We propose a simple model, in which the localized high electric field under the tip assists the production of mobile Au adatoms by detachment from surface steps, and a radial field gradient causes a net flux of atoms toward the tip by surface diffusion. These processes give rise to an unstable surface deformation which, if left unchecked, results in a destructive mechanical contact. We discuss our findings with respect to earlier work using voltage pulses in the STM as a means of nanofabrication.

More Details

Diffusion of Ca and Mg in Calcite

American Mineralogist

Cygan, Randall T.

The self-diffusion of Ca and the tracer diffusion of Mg in calcite have been experimentally measured using isotopic tracers of {sup 25}Mg and {sup 44}Ca. Natural single crystals of calcite were coated with a thermally-sputtered oxide thin film and then annealed in a CO{sub 2} gas at one atmosphere total pressure and temperatures from 550 to 800 C. Diffusion coefficient values were derived from the depth profiles obtained by ion microprobe analysis. The resultant activation energies for Mg tracer diffusion and Ca self-diffusion are respectively: E{sub a}(Mg) = 284 {+-} 74 kJ/mol and E{sub a}(Ca) = 271 {+-} 80 kJ/mol. For the temperature ranges in these experiments, the diffusion of Mg is faster than Ca. The results are generally consistent in magnitude with divalent cation diffusion rates obtained in previous studies and provide a means of interpreting the thermal histories of carbonate minerals, the mechanism of dolomitization, and other diffusion-controlled processes. The results indicate that cation diffusion in calcite is relatively slow and cations are the rate-limiting diffusing species for the deformation of calcite and carbonate rocks. Application of the calcite-dolomite geothermometer to metamorphic assemblages will be constrained by cation diffusion and cooling rates. The direct measurement of Mg tracer diffusion in calcite indicates that dolomitization is unlikely to be accomplished by Mg diffusion in the solid state but by a recrystallization process.

More Details

Calorimetric Studies of the Energetics of Order-Disorder in the System Mg(1-x)Fe(x)Ca(CO(3))(2)

American Mineralogist

Brady, Patrick V.

Calorimetric studies by Chai and Navrotsky (1996) on dolomite-ankerite energetic have been extended by including two additional types of samples: a very disordered stoichiometric MgCa(CO{sub 3}){sub 2} prepared from low temperature aqueous solution and three largely ordered natural samples of intermediate iron content. Combining these data with previous work, three distinct trends of energetic can be seen: those for samples with nearly complete order, nearly complete disorder, and intermediate order. From these trends, the enthalpy of complete disordering is estimated to be 33 {+-} 6 kJ/mol for MgCa(CO{sub 3}){sub 2} and 18 {+-} 5 kJ/mol for FeCa(CO{sub 3}){sub 2}.

More Details

A Performance Analysis of Evolutionary Pattern Search with Generalized Mutation Steps

Hart, William E.

Evolutionary pattern search algorithms (EPSAs) are a class of evolutionary algorithms (EAs) that have convergence guarantees on a broad class of nonconvex continuous problems. In previous work we have analyzed the empirical performance of EPSAs. This paper revisits that analysis and extends it to a more general model of mutation. We experimentally evaluate how the choice of the set of mutation offsets affects optimization performance for EPSAs. Additionally, we compare EPSAs to self-adaptive EAs with respect to robustness and rate of optimization. All experiments employ a suite of test functions representing a range of modality and number of multiple minima.

More Details

Comparing Evolutionary Programs and Evolutionary Pattern Search Algorithms: A Drug Docking Application

Hart, William E.

Evolutionary programs (EPs) and evolutionary pattern search algorithms (EPSAS) are two general classes of evolutionary methods for optimizing on continuous domains. The relative performance of these methods has been evaluated on standard global optimization test functions, and these results suggest that EPSAs more robustly converge to near-optimal solutions than EPs. In this paper we evaluate the relative performance of EPSAs and EPs on a real-world application: flexible ligand binding in the Autodock docking software. We compare the performance of these methods on a suite of docking test problems. Our results confirm that EPSAs and EPs have comparable performance, and they suggest that EPSAs may be more robust on larger, more complex problems.

More Details

Pollution Prevention Wipe Application Study

Lopez, Edwin P.

As part of a pollution prevention program, a study was conducted at Sandia National Laboratories and at the Amarillo, ''Pantex Plant'' to identify a suitable replacement solvent(s) for cleaning hardware during routine maintenance operations. Current cleaning is performed using solvents (e.g. acetone, toluene, MEK, alcohols) that are classified as Resource Conservation and Recovery Act (RCW) materials. The Environmental Protection Agency (EPA) has assigned four characteristics as the criteria for determining whether a material is identified as hazardous under RCRA: Ignitability, Corrosivity, Reactivity and Toxicity. Within the DOE and DoD sector, these solvents are used with hand wipes to clean surfaces prior to O-ring replacement, to remove decals for new labeling, to clean painted surfaces prior to reconditioning, and for other general maintenance purposes. In some cases, low level radioactive contamination during cleaning necessitates that the RCIL4 solvent-containing wipes be classified as mixed waste. To avoid using RCRA materials, cleaning candidates were sought that had a flashpoint greater than 140 F, a pH between 2.5 and 12.5, and did not fail the reactivity and toxicity criteria. Three brominated cleaners, two hydrofluoroether azeotropes and two aliphatic hydrocarbon cleaner formulations were studied as potential replacements. Cleaning efficacy, materials compatibility, corrosion and accelerated aging studies were conducted and used to screen potential candidates. Hypersolve NPB (an n-propyl bromide based formulation) consistently ranked high in removing typical contaminants for weapons applications.

More Details

Sand Production Modeling Using Superquadric Discrete Elements and Coupling of Fluid Flow and Particle Motion

Preece, Dale S.

Techniques for modeling oil well sand production have been developed using the formulations for superquadric discrete elements and Darcy fluid flow. Discrete element models are generated using the new technique of particle cloning. Discrete element sources and sinks allow simulation of sand production from the initial state through the transition to an equilibrium state where particles are created and removed at the same rate.

More Details

Architectural Surety Applications for Building Response to Dynamic Loads

Matalucci, R.V.

This paper provides a summary introduction to the emerging area of Architectural Surety{trademark} applications for buildings and infrastructures that are subjected to dynamic loads from blast and naturally occurring events. This technology area has been under investigation to assist with the definition of risks associated with dynamic loads and to provide guidance for determining the required upgrading and retrofitting techniques suggested for reducing building and infrastructure vulnerabilities to such dynamic forces. This unique approach involves the application of risk management techniques for solving problems of the as-built environment through the application of security, safety, and reliability principles developed in the nuclear weapons programs of the United States Department of Energy (DOE) and through the protective structures programs of the German Ministry of Defense (MOD). The changing responsibilities of engineering design professionals are addressed in light of the increased public awareness of structural and facility systems' vulnerabilities to malevolent, normal, and abnormal environment conditions. Brief discussions are also presented on (1) the need to understand how dynamic pressures are affected by the structural failures they cause, (2) the need to determine cladding effects on columns, walls, and slabs, and (3) the need to establish effective standoff distance for perimeter barriers. A summary description is presented of selected technologies to upgrade and retrofit buildings by using high-strength concrete and energy-absorbing materials and by specifying appropriately designed window glazing and special masonry wall configurations and composites. The technologies, material performance, and design evaluation procedures presented include super-computational modeling and structural simulations, window glass fragmentation modeling, risk assessment procedures, instrumentation and health monitoring systems, three-dimensional CAD virtual reality visualization techniques, and material testing data.

More Details

(6)Li, (7)Li Nuclear Magnetic Resonance Investigation of Lithium Coordination in Binary Phosphate Glasses

Journal of Non-Crystalline Solids

Alam, Todd M.

{sup 6}Li and {sup 7}Li solid state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy has been used to investigate the local coordination environment of lithium in a series of xLi{sub 2}O {center_dot} (1-x)P{sub 2}O{sub 5} glasses, where 0.05 {le} x {le} 0.55. Both the {sup 6}Li and {sup 7}Li show chemical shift variations with changes in the Li{sub 2}O concentration, but the observed {sup 6}Li NMR chemical shifts closely approximate the true isotropic chemical shift and can provide a measure of the lithium bonding environment. The {sup 6}Li NMR results indicate that in this series of lithium phosphate glasses the Li atoms have an average coordination between four and five. The results for the metaphosphate glass agree with the coordination number and range of chemical shifts observed for crystalline LiPO{sub 3}. An increase in the {sup 6}Li NMR chemical shift with increasing Li{sub 2}O content was observed for the entire concentration range investigated, correlating with increased cross-linking of the phosphate tetrahedral network by O-Li-O bridges. The {sup 6}Li chemical shifts were also observed to vary monotonically through the anomalous glass transition temperature (T{sub g}) minimum. This continuous chemical shift variation shows that abrupt changes in the Li coordination environment do not occur as the Li{sub 2}O concentration is increased, and such abrupt changes can not be used to explain the T{sub g} minimum.

More Details

Protein Structure Prediction with Evolutionary Algorithms

Hart, William E.

Evolutionary algorithms have been successfully applied to a variety of molecular structure prediction problems. In this paper we reconsider the design of genetic algorithms that have been applied to a simple protein structure prediction problem. Our analysis considers the impact of several algorithmic factors for this problem: the confirmational representation, the energy formulation and the way in which infeasible conformations are penalized, Further we empirically evaluated the impact of these factors on a small set of polymer sequences. Our analysis leads to specific recommendations for both GAs as well as other heuristic methods for solving PSP on the HP model.

More Details

Penetration Experiments with 6061-T6511 Aluminum Targets and Spherical-Nose Steel Projectiles at Striking Velocities Between 0.5 and 3.0 km/s

International Journal of Impact Engineering

Forrestal, Michael J.

We conducted depth of penetration experiments with 7.11-mm-diameter, 74.7-mm-long, spherical-nose, 4340 steel projectiles launched into 250-mm-diameter, 6061-T6511 aluminum targets. To show the effect of projectile strength, we used projectiles that had average Rockwell harnesses of R{sub c} = 36.6, 39.5, and 46.2. A powder gun and two-stage, light-gas guns launched the 0.023 kg projectiles at striking velocities between 0.5 and 3.0 km/s. Post-test radiographs of the targets showed three response regions as striking velocities increased: (1) the projectiles remained visibly undeformed, (2) the projectiles permanently deformed without erosion, and (3) the projectiles eroded and lost mass. To show the effect of projectile strength, we compared depth-of-penetration data as a function of striking velocity for spherical-nose rods with three Rockwell harnesses at striking velocities ranging from 0.5 to 3.0 km/s. To show the effect of nose shape, we compared penetration data for the spherical-nose projectiles with previously published data for ogive-nose projectiles.

More Details

Batch Microreactor Studies of Base Catalyzed Ligin Depolymerization in Alcohol Solvents

Miller, James E.

The depolymerization of organosolv-derived lignins by bases in methanol or ethanol solvent was studied in rapidly heated batch microreactors. The conversion of lignin to ether solubles by KOH in methanol or ethanol was rapid at 290 "C, reaching the maximum value within 10-15 minutes. An excess of base relative to Lignin monomer units was required for maximum conversion. Strong bases (KOH, NaOH, CSOH) convert more of the lignin to ether soluble material than do weaker bases LiOH, Ca(OH)2, and NacCO2). Ethanol and methanol are converted to acetic and formic acid respectively under the reaction conditions with an activation energy of approximately 50 kcal/mol. This results in a loss of solvent, but more importantly neutralizes the base catalyst, halting forward progress of the reaction.

More Details

The Growing Necessity for Continuing Education: The Short Course Option

Romig Jr., Alton D.

Continuing education is a critical issue in the workplace. Rapid change, the emergence of new technology, and the lack of trained individuals make continuing education an imperative for employers. The desire for individual growth and marketability make it an imperative for the employee also. While there are many options for continuing education, an increasingly popular vehicle is the short course. Time, cost efficiency and instruction by those experienced in real industrial practice are key factors in the success of this educational format. Over the past couple of decades, short course offerings and the number and type of sponsoring organizations have grown significantly. Within the scientific community, courses in basic disciplines (e.g., materials characterization), emergent technologies (e.g., Micro-Electro- Mechanical Systems), equipment operation (e.g., electron microscopes) and even business practices (e.g., ES&H, proposal writing) have emerged and are taught by universities, technical societies and equipment manufacturers. Short course offerings and formats are evolving. Presently, it is possible to find series of courses which define specific curricula. These curricula set the stage for new developments in the future, including increased certification and licensing (e.g., technologists). Along with such certifications will come the need for accreditation. Who will offer such programs, and especially, who will accredit them are significant questions. Perhaps the most dramatic changes will occur with the integration of advanced information technology. While satellite-based remote offerings are available, the use of the web for educating a dispersed group is just beginning to emerge. In its simplest forms, this offers little advantage over a video or a real-time satellite course, but the eventual emergence of tele-operation of experimental equipment will revolutionize remote teaching.

More Details

Rigid Square Inclusion Embedded within an Epoxy Disk: Asympototic Stress Analysis

International Journal of Fracture

Guess, T.R.; Reedy, E.D.

The asymptotically singular stress state found at the tip of a rigid, square inclusion embedded within a thin, linear elastic disk has been determined for both uniform cooling and an externally applied pressure. Since these loadings we symmetric, the singular stress field is characterized by a single stress intensity factor, and the applicable calibration relationship has been determined for both fully bonded and unbended inclusions. A lack of interfacial bonding has a profound effect on inclusion-tip stress fields. A large radial compressive stress is generated in front of the inclusion tip when the inclusion is well bonded, whereas a large tensile hoop stress is generated when the inclusion is unbended, and frictionless sliding is allowed. Consequently, an epoxy disk containing an unbended inclusion appears more likely to crack when cooled than a disk containing a fully bonded inclusion. Elastic-plastic calculations show that when the inclusion is unbended, encapsulant yielding has a significant effect on the inclusion-tip stress state. Yielding relieves stress parallel to the interface and greatly reduces the radial compressive stress in front of the inclusion. As a result, the encapsulant is subjected to a nearly uniaxial tensile stress at the inclusion tip. For a typical high-strength epoxy, the calculated yield zone is embedded within the region dominated by the elastic hoop stress singularity. A limited number of tests have been carried out to determine if encapsulant cracking can be induced by cooling a specimen fabricated by molding a square, steel insert within a thin, epoxy disk. Test results are in qualitative agreement with analysis. Cracks developed only in disks with mold-released inserts, and the tendency for cracking increased with inclusion size.

More Details

Radiative Properties of High Wire Number Tungsten Arrays with Implosion Times up to 250 ns

Journal of Plasma Physics

Deeney, Christopher D.

High wire number, 25-mm diameter tungsten wire arrays have been imploded on the 8-MA Saturn generator, operating in a long-pulse mode. By varying the mass load from 710 to 6140 ps/cm, implosion times of 130 to 250 ns have been obtained with implosion velocities of 50 to 25 cn-dys, respectively. These z-pinch implosions produced plasmas with millimeter diameters that radiated 600 to 800 kJ of x-rays, with powers of 20 to 49 TW; the corresponding pulse widths were 19 to 7.5 ns, with risetimes ranging from 6.5 to 4.0 ns. These powers and pulse widths are similar to those achieved with 50 ns implosion times on Saturn. Two-dimensional, radiation- magnetohydrodynamic calculations indicate that the imploding shells in these long implosion time experiments are comparable in width to those in the short pulse cases. This can only be due to lower initial perturbations. A heuristic wire array model suggests that the reduced perturbations, in the long pulse cases, may be due to the individual wire merger occurring well before the acceleration of the shell. The experiments and modeling suggest that 150 to 200 ns implosion time z-pinches could be employed for high-power, x-ray source applications.

More Details

A Framework for Model Validation

Easterling, Robert G.

Computational models have the potential of being used to make credible predictions in place of physical testing in many contexts, but success and acceptance require a convincing model validation. In general, model validation is understood to be a comparison of model predictions to experimental results but there appears to be no standard framework for conducting this comparison. This paper gives a statistical framework for the problem of model validation that is quite analogous to calibration, with the basic goal being to design and analyze a set of experiments to obtain information pertaining to the `limits of error' that can be associated with model predictions. Implementation, though, in the context of complex, high-dimensioned models, poses a considerable challenge for the development of appropriate statistical methods and for the interaction of statisticians with model developers and experimentalists. The proposed framework provides a vehicle for communication between modelers, experimentalists, and the analysts and decision-makers who must rely on model predictions.

More Details

Collision-free pickup and movement of large objects

Iron and Steel Engineer

Drotning, William D.

An automated system is described for the sensor-based precision docking and manipulation of large objects. Past work in the remote handling of large nuclear waste containers is extendable to the problems associated with the handling of large objects such as steel coils. Computer vision and ultrasonic proximity sensing are used to control the precision docking of large objects, and swing-damped motion control of overhead cranes is used to control the position of the pickup device and suspended payload during movement. Real-time sensor processing and model-based control are used to accurately position payloads.

More Details

Laboratory Characterization of Mechanical and Permeability Properties of Dynamically Compacted Crushed Salt

Hansen, Francis D.

The U. S. Department of Energy plans to dispose of transuranic wastes at the Waste Isolation Pilot Plant (WIPP), a geologic repository located at a depth of about 655 meters. The WIPP underground facility is located in the bedded salt of the Salado Formation. Access to the facility is provided through vertical shafts, which will be sealed after decommissioning to limit the release of hazardous waste from the repository and to limit flow into the facility. Because limited data are available to characterize the properties of dynamically compacted crushed salt, Sandia National Laboratories authorized RE/SPEC to perform additional tests on specimens of dynamically compacted crushed salt. These included shear consolidation creep, permeability, and constant strain-rate triaxial compression tests. A limited number of samples obtained from the large compacted mass were available for use in the testing program. Thus, additional tests were performed on samples that were prepared on a smaller scale device in the RE/SPEC laboratory using a dynamic-compaction procedure based on the full-scale construction technique. The laboratory results were expected to (1) illuminate the phenomenology of crushed-salt deformation behavior and (2) add test results to a small preexisting database for purposes of estimating parameters in a crushed-salt constitutive model. The candidate constitutive model for dynamically compacted crushed salt was refined in parallel with this laboratory testing.

More Details

Estimation of Retained Crude Oil Associated with Crushed Salt and Salt Cores in the Presence of Near-Saturated Brine

Hinkebein, Thomas E.

This paper describes three experiments whose purpose is to determine the amount of retained oil on massive salt surfaces and in crushed salt in the presence of water and brine. These experiments have application to the decommissioning process for the Weeks Island mine. In the first experiment, oil-coated salt cores were immersed in either fresh water or in 85% brine. In the case of both fluids, the oil was completely removed from the cores within several hours. In the second experiment, oil-coated salt pieces were suspended in air and the oil was allowed to drain. The weight of retained oil clinging to the salt was determined. This experiment was used to estimate the total amount of oil clinging to the roofs of the mine. The total amount of oil clinging to the roofs of the mine is estimated to be between 240 and 400 m3 (1500 and 2500 BBL). In the third experiment, a pan of oil-soaked crushed salt was immersed in 85% brine, and oil removal from the salt was monitored as a function of time. At the start of the experiment, prior to immersion, 16% of the bulk volume of the crushed salt was determined to be interstitial oil. After the pan of crushed salt was immersed in 85% brine, 80% of the oil, which had been in the interstitial spaces of the crushed salt, immediately floated to the surface of the brine. This oil was not bound and was immediately released. During the next 380 hours, oil continued to separate from the salt and the rate of transfer was governed by a mass-transfer rate limitation.

More Details

The Influence of Crystal Structure on the Lattice Sites and Formation Energies of Hydrogen in Wurtzite and Zinc-Blende GaN

Physical Review B

Wright, Alan F.

Charge-state calculations based on density-functional theory are used to study the formation energy of hydrogen in wurtzite and zinc-blende GaN as a function of Fermi level Comparison of these results reveals notable differences including a 0.56 eV lower formation energy for H2 in wurtzite, and different configurations for H2 and H- in the two crystal structures. Furthermore, H+ is found to be equally stable at bond-centered and anti-bonding sites in wurtzite, whereas it is unstable at a bond-centered site in zinc blende. These differences are due to distinct features of the two crystal structures including: the lower symmetry of wurtzite which provides a wider selection of bonding sites for H+, and the existence of extended three-fold symmetric channels oriented along the c-axis in wurtzite which provide more favorable bonding configurations for H2 and H-.N-H+ stretch-mode vibration frequencies, clustering of ?3+ in p-type material, and diffusion barriers for H" are also investigated in wurtzite GaN. A diffusion barrier of 1.6 eV is found for H- in wurtzite GaN, significantly lower than a previous estimate, and a tendency for H+ clustering in p-type material is found.

More Details

Web Application Design Using Server-Side JavaScript

Hampton, J.; Simons, R.

This document describes the application design philosophy for the Comprehensive Nuclear Test Ban Treaty Research & Development Web Site. This design incorporates object-oriented techniques to produce a flexible and maintainable system of applications that support the web site. These techniques will be discussed at length along with the issues they address. The overall structure of the applications and their relationships with one another will also be described. The current problems and future design changes will be discussed as well.

More Details

Midwave Infrared (2-6{micro}m) Emitter-Based Chemical Sensor Systems

Kurtz, S.R.

Long wavelength (2-6 {micro}m) diode emitters are desirable for many applications including monitoring of chemical species in the environment and manufacturing, long wavelength fiber-optic communications, lidar, and JR detector counter-measures. No practical diode lasers are available for any of these applications because the band structure of bulk III-V, II-VI, and IV-VI semiconductor alloys results in large Auger recombination rates at these wavelengths. Experimental and theoretical work at Sandia has resulted in new understanding of the electronic properties of narrow bandgap III-V heterostructures, and we have found methods of reducing the Auger rates in certain InAsSb superlattices and quantum wells. These devices enable us to begin chemical sensing demonstrations of important species such as CO-CO{sub 2} and numerous other compounds. This project will involve developing chemical sensing systems and determining the sensitivity and limitations of these systems. Concurrently, we will improve upon infrared emitters used in these systems.

More Details

Automated Geometric Model Builder Using Range Image Sensor Data: Final Acquistion

Diegert, Carl

This report documents a data collection where we recorded redundant range image data from multiple views of a simple scene, and recorded accurate survey measurements of the same scene. Collecting these data was a focus of the research project Automated Geometric Model Builder Using Range Image Sensor Data (96-0384), supported by Sandia's Laboratory-Directed Research and Development (LDRD) Program during fiscal years 1996, 1997, and 1998. The data described here are available from the authors on CDROM, or electronically over the Internet. Included in this data distribution are Computer-Aided Design (CAD) models we constructed from the survey measurements. The CAD models are compatible with the SolidWorks 98 Plus system, the modern Computer-Aided Design software system that is central to Sandia's DeskTop Engineering Project (DTEP). Integration of our measurements (as built) with the constructive geometry process of the CAD system (as designed) delivers on a vision of the research project. This report on our final data collection will also serve as a final report on the project.

More Details

Automation, Control and Modeling of Compound Semiconductor Thin-Film Growth

Coltrin, Michael E.

This report documents the results of a laboratory-directed research and development (LDRD) project on control and agile manufacturing in the critical metalorganic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) materials growth processes essential to high-speed microelectronics and optoelectronic components. This effort is founded on a modular and configurable process automation system that serves as a backbone allowing integration of process-specific models and sensors. We have developed and integrated MOCVD- and MBE-specific models in this system, and demonstrated the effectiveness of sensor-based feedback control in improving the accuracy and reproducibility of semiconductor heterostructures. In addition, within this framework we have constructed ''virtual reactor'' models for growth processes, with the goal of greatly shortening the epitaxial growth process development cycle.

More Details

A Comparison of High-Voltage Switches

Chu, K.W.

This report summarizes our work on high-voltage switches during the past few years. With joint funding from the Department of Energy (DOE) and the Department of Defense (DOD), we tested a wide variety of switches to a common standard. This approach permitted meaningful comparisons between disparate switches. Most switches were purchased from commercial sources, though some were experimental devices. For the purposes of this report, we divided the switches into three generic types (gas, vacuum, and semiconductor) and selected data that best illustrates important strengths and weaknesses of each switch type. Test techniques that indicate the state of health of the switches are emphasized. For example, a good indicator of residual gas in a vacuum switch is the systematic variation of the switching delay in response to changes in temperature and/or operating conditions. We believe that the presentation of this kind of information will help engineers to select and to test switches for their particular applications. Our work was limited to switches capable of driving slappers. Also known as exploding-foil initiators, slappers are detonators that initiate a secondary explosive by direct impact with a small piece of matter moving at the detonation velocity (several thousands of meters per second). A slapper is desirable for enhanced safety (no primary explosive), but it also places extra demands on the capacitor-discharge circuit to deliver a fast-rising current pulse (greater than 10 A/ns) of several thousand amperes. The required energy is substantially less than one joule; but this energy is delivered in less than one microsecond, taking the peak power into the megawatt regime. In our study, the switches operated in the 1 kV to 3 kV range and were physically small, roughly 1 cm{sup 3} or less. Although a fuze functions only once in actual use, multiple-shot capability is important for production testing and for research work. For this reason, we restricted this report to multiple-shot switches. Furthermore, our work included only switches with submicrosecond timing precision, thereby excluding mechanical switches.

More Details

Explosive Containment Chamber Vulnerability to Chemical Munition Fragment Impact

Kipp, Marlin E.

Scenarios in which the explosive burster charge in a chemical munition accidentally detonates inside demilitarization containment chambers are analyzed. The vulnerability of an inner Auxiliary Pressure Vessel and the primary Explosive Containment Chamber to impact by fragments from the largest explosive charge expected to be placed in these chambers (M426, 8 inch, chemical, 7 lbs Comp B) is evaluated. Numerical (CTH) and empirical (ConWep) codes are used to characterize the munition fragments, and assess the consequences of their impact and penetration on the walls of these vessels. Both pristine and corroded configurations of the munition have been considered, with and without liquid agent fill. When the munition burster charge detonates, munition case fragments impact and perforate the Auxiliary Pressure Vessel wall, resulting in extensive breakup of this inner chamber and the formation of additional fragments. These residual munition case and Auxiliary Pressure Vessel fragments have sufficient mass and velocity to crater the Explosive Containment Chamber inner wall layer, with accompanying localized permanent deformation (bulging) of both the inner and outer chamber walls. The integrity of the Explosive Containment Chamber was retained under all of the APV / munition configurations considered in this study, with no evidence that primary (munition) or secondary (munition and Auxiliary Pressure Vessel) fragments will perforate the inner chamber wall. Limited analyses of munition detonation without the Auxiliary Pressure Vessel present indicate that some munition span fragments could form under those conditions that have sufficient mass and velocity to perforate the inner wall of the Explosive Containment Chamber.

More Details

Laboratory and Pilot Scale Evaluation of a Permeable Reactive Barrier Technology for Use at Rocky Flats Environmental Technology Site (RFETS)

Dwyer, Brian P.

Three reactive materials were evaluated to identify the optimum treatment reagent for use in a Permeable Reactive Barrier Treatment System at Rocky Flats Environmental Technology Site (RFETS). The three reactive media evaluated included high carbon steel iron filings, an iron-silica alloy in the form of a foam aggregate, and a pellicular humic acid based sorbent (Humasorb from Arctech) mixed with sand. Each material was tested in the laboratory at column scale using simulated site water. All three materials showed promise for the 903 Mound Site; however, the iron filings were determined to be the most cost effective media. In order to validate the laboratory results, the iron filings were further tested at a pilot scale (field columns) using actual site water. Pilot test results were similar to laboratory results; consequently, the iron filings were chosen for the full scale demonstration of this reactive barrier technology. Design parameters including saturated hydraulic conductivity, treatment residence time, and head loss across the media were provided to the design team in support of the final design.

More Details

Fast Resistive Bolometry

Spielman, Rick

Resistive bolometry is an accurate, robust, spectrally broadband technique for measuring absolute x-ray fluence and flux. Bolometry is an independent technique for x-ray measurements that is based on a different set of physical properties than other diagnostics such as x-ray diodes, photoconducting detectors, and P-I-N diodes. Bolometers use the temperature-driven change in element resistivity to determine the total deposited energy. The calibration of such a device is based on fundamental material properties and its physical dimensions. We describe the use of nickel and gold bolometers to measure x rays generated by high-power z pinches on Sandia's Saturn and Z accelerators. The Sandia bolometer design described herein has a pulse response of {approximately}1 ns. We describe in detail the fabrication, fielding, and data analysis issues leading to highly accurate x-ray measurements. The fundamental accuracy of resistive bolometry will be discussed.

More Details

Immersive CAD

Ames, Arlo

This paper documents development of a capability for performing shape-changing editing operations on solid model representations in an immersive environment. The capability includes part- and assembly-level operations, with part modeling supporting topology-invariant and topology-changing modifications. A discussion of various design considerations in developing an immersive capability is included, along with discussion of a prototype implementation we have developed and explored. The project investigated approaches to providing both topology-invariant and topology-changing editing. A prototype environment was developed to test the approaches and determine the usefulness of immersive editing. The prototype showed exciting potential in redefining the CAD interface. It is fun to use. Editing is much faster and friendlier than traditional feature-based CAD software. The prototype algorithms did not reliably provide a sufficient frame rate for complex geometries, but has provided the necessary roadmap for development of a production capability.

More Details

Location Independent Professional Project: A Pilot Study

Miller, Marc M.

This pilot study project explored the problem of providing access to the nomadic worker who desires to connect a computer through network access points at a number of different locations within the SNL/NM campus as well as outside the campus. The design and prototype development gathered knowledge that may allow a design to be developed that could be extended to a larger number of SNL/NM network drop boxes. The focus was to provide a capability for a worker to access the SNL IRN from a network drop box (e.g. in a conference room) as easily as when accessing the computer network from the office normally used by the worker. Additional study was done on new methods to authenticate the off campus worker, and protect and control access to data.

More Details

PdMn and PdFe: New Materials for Temperature Measurement Near 2K

Aselage, Terrence L.

Interest in the critical dynamics of superfluid He in microgravity conditions has motivated the development of new high resolution thermometry technology for use in space experiments near 2K. The current material commonly used as the temperature sensing element for high resolution thermometers (HRTs) is copper ammonium bromide (Cu(NH{sub 4}){sub 2}Br{sub 4}2H{sub 2}O) or CAB, which undergoes a ferromagnetic phase transition at 1.8K. HRTs made from CAB have demonstrated low drift (<10fK/s) and a temperature resolution of 0.1nK. Unfortunately, paramagnetic salts such as CAB are difficult to prepare and handle, corrosive to most metals, and become dehydrated if kept under vacuum conditions at room temperature. We have developed a magnetic thermometer using dilute magnetic alloys of Mn or Fe dissolved in a pure Pd matrix. These metallic thermometers are easy to fabricate, chemically inert, and mechanically robust. Unlike salts, they may be directly soldered to the stage to be measured. Also, the Curie temperature can be varied by changing the concentration of Fe or Mn, making them available for use in a wide temperature range. Susceptibility measurements, as well as preliminary noise and drift measurements, show them to have sub-nK resolution with a drift of less than 10{sup {minus}13} K/s.

More Details

Crushed Salt Constitutive Model

Hansen, Francis D.

The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well.

More Details

DOE Laboratory Catalysis Research Symposium - Abstracts

Dunham, T.

The conference consisted of two sessions with the following subtopics: (1) Heterogeneous Session: Novel Catalytic Materials; Photocatalysis; Novel Processing Conditions; Metals and Sulfides; Nuclear Magnetic Resonance; Metal Oxides and Partial Oxidation; Electrocatalysis; and Automotive Catalysis. (2) Homogeneous Catalysis: H-Transfer and Alkane Functionalization; Biocatalysis; Oxidation and Photocatalysis; and Novel Medical, Methods, and Catalyzed Reactions.

More Details

3-D Finite Element Analyses of the Egan Cavern Field

Klamerus, Eric W.

Three-dimensional finite element analyses were performed for the two gas-filled storage caverns at the Egan field, Jennings dome, Louisiana. The effects of cavern enlargement on surface subsidence, storage loss, and cavern stability were investigated. The finite element model simulated the leaching of caverns to 6 and 8 billion cubic feet (BCF) and examined their performance at various operating conditions. Operating pressures varied from 0.15 psi/ft to 0.9 psi/ft at the bottom of the lowest cemented casing. The analysis also examined the stability of the web or pillar of salt between the caverns under differential pressure loadings. The 50-year simulations were performed using JAC3D, a three dimensional finite element analysis code for nonlinear quasistatic solids. A damage criterion based on onset of dilatancy was used to evaluate cavern instability. Dilation results from the development of microfractures in salt and, hence, potential increases in permeability onset occurs well before large scale failure. The analyses predicted stable caverns throughout the 50-year period for the range of pressures investigated. Some localized salt damage was predicted near the bottom walls of the caverns if the caverns are operated at minimum pressure for long periods of time. Volumetric cavern closures over time due to creep were moderate to excessive depending on the salt creep properties and operating pressures. However, subsidence above the cavern field was small and should pose no problem, to surface facilities.

More Details

Full-Scale Structural and NDI Validation Tests of Bonded Composite Doublers for Commercial Aircraft Applications

Roach, Dennis P.

Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single Boron-Epoxy composite doubler to the damaged structure. Most of the concerns surrounding composite doubler technology pertain to long-term survivability, especially in the presence of non-optimum installations, and the validation of appropriate inspection procedures. This report focuses on a series of full-scale structural and nondestructive inspection (NDI) tests that were conducted to investigate the performance of Boron-Epoxy composite doublers. Full-scale tests were conducted on fuselage panels cut from retired aircraft. These full-scale tests studied stress reductions, crack mitigation, and load transfer capabilities of composite doublers using simulated flight conditions of cabin pressure and axial stress. Also, structures which modeled key aspects of aircraft structure repairs were subjected to extreme tension, shear and bending loads to examine the composite laminate's resistance to disbond and delamination flaws. Several of the structures were loaded to failure in order to determine doubler design margins. Nondestructive inspections were conducted throughout the test series in order to validate appropriate techniques on actual aircraft structure. The test results showed that a properly designed and installed composite doubler is able to enhance fatigue life, transfer load away from damaged structure, and avoid the introduction of new stress risers (i.e. eliminate global reduction in the fatigue life of the structure). Comparisons with test data obtained prior to the doubler installation revealed that stresses in the parent material can be reduced 30%--60% through the use of the composite doubler. Tests to failure demonstrated that the bondline is able to transfer plastic strains into the doubler and that the parent aluminum skin must experience significant yield strains before any damage to the doubler will occur.

More Details

External Review for Sandia National Laboratory Microelectronics and Photonics Program 1998 Review

Romig Jr., Alton D.; Mcwhorter, Paul J.

The committee regards Sandia's Microelectronics and Photonics Program as a vital and strategic resource for the nation. The Microsystems (MEMS) and Chem Lab programs were assessed as unique and best-in-class for the development of significant application areas. They contribute directly to the Sandia mission and impact the development of new commercial areas. The continued development and integration of Radiation hard silicon integrated circuits, micromechanical systems, sensors, and optical communications is essential to the national security mission. The quality of the programs is excellent to outstanding overall. MEMS and Chem Lab activities are examples of outstanding programs. The committee was pleased to see the relationship of the microelectronics development programs to applications in the mission. In a future review the committee would like to see Sandia's research programs and a vision for connectivity to potential national security needs. (This review may be based on analysis and assumptions about the strategic needs of the nation.) In summary, the Microelectronics and Photonics capability affords Sandia the opportunity to deliver exceptional service in the national interest across broad technology areas. The presentations were excellent and well integrated. We received ample pre-reading materials, expectations were well set and the documents were high quality. The committee was provided an agenda with sufficient time among us and some selected one-on-one time with the researchers. The composition of the committee held representation from industry, universities and government. Committee contributions were well balanced and worked as a team. However, the committee was disappointed that no member of Sandia executive management was able to be present for the readout and final debriefing. (A late, higher priority conflict developed.) The members of the EST Program and the committee put substantial effort into the review but a written report like this one is not a substitute for direct feedback in helping SNL leadership assess the value of these programs.

More Details

Low-Level, Measured Response of Los Alamos National Laboratories TA 16 - Building 411 and TA 8 - Building 23 to Direct Flash Attachment of Lightning

Merewether, Kimball O.

On September 24, 25, 28, and 29, 1998 and on October 19 and 23, 1998, transfer impedance measurements were made on Los Alamos National Laboratories TA 16 - Building 411 and TA 8-- Building 23 to characterize their interior open-circuit voltage response to a direct lightning flash attachment to the structures. The theory, history, measurement methods and equipment, and specific measured results are detailed. The measured results demonstrate that if the remaining metallic penetrations are bonded, then the rebar of the two structures is sufficiently well connected to form a Faraday cage that reduces the maximum open-circuit voltage inside the structure to a sufficiently low level that the required standoff distance to prevent arcing to explosive assemblies is 6.8 inches for TA 16 - Building 411 and is 11.5 inches for TA 8 - Building 23.

More Details

A Gas-Cooled Reactor Surface Power System

AIP Conference Proceedings

Lipinski, Ronald

A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-I 00 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality cannot occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

More Details

Stability of Trapped Electrons in SiO(2)

Applied Physics Letters

Fleetwood, Daniel M.

Thermally stimulated current and capacitance voltage methods are used to investigate the thermal stability of trapped electrons associated with radiation-induced trapped positive charge in metal-oxide-semiconductor capacitors. The density of deeply trapped electrons in radiation-hardened 45 nm oxides exceeds that of shallow electrons by a factor of {approximately}3 after radiation exposure, and by up to a factor of 10 or more during biased annealing. Shallow electron traps anneal faster than deep traps, and seem to be at least qualitatively consistent with the model of Lelis et al. Deeper traps maybe part of a fundamentally distinct dipole complex, and/or have shifted energy levels that inhibit charge exchange with the Si.

More Details

A Finite Element Method for Free-Surface Flows of Incompressible Fluids in Three Dimensions, Part II: Dynamic Wetting Lines

International Journal for Numerical Methods in Fluids

Baer, Thomas A.

To date, few researchers have solved three-dimensional free-surface problems with dynamic wetting lines. This paper extends the free-surface finite element method described in a companion paper [Cairncross, R.A., P.R. Schunk, T.A. Baer, P.A. Sackinger, R.R. Rao, "A finite element method for free surface flows of incompressible fluid in three dimensions, Part I: Boundary-Fitted mesh motion.", to be published (1998)] to handle dynamic wetting. A generalization of the technique used in two dimensional modeling to circumvent double-valued velocities at the wetting line, the so-called kinematic paradox, is presented for a wetting line in three dimensions. This approach requires the fluid velocity normal to the contact line to be zero, the fluid velocity tangent to the contact line to be equal to the tangential component of web velocity, and the fluid velocity into the web to be zero. In addition, slip is allowed in a narrow strip along the substrate surface near the dynamic contact line. For realistic wetting-line motion, a contact angle which varies with wetting speed is required because contact lines in three dimensions typically advance or recede a different rates depending upon location and/or have both advancing and receding portions. The theory is applied to capillary rise of static fluid in a corner, the initial motion of a Newtonian droplet down an inclined plane, and extrusion of a Newtonian fluid from a nozzle onto a moving substrate. The extrusion results are compared to experimental visualization. Subject Categories

More Details

The Band Gap of AlGaN Alloys

Applied Physics Letters

Lee, Stephen R.

The band gap of AlXGal.XN is measured for the composition range 0s<0.45; the resulting bowing parameter, b=+O.69 eV, is compared to 20 previous works. A correlation is found between the measured band gaps and the methods used for epitaxial growth of the AlXGal_XN: directly nucleated or buffered growths of AlXGal-XN initiated at temperatures T>800 C on sapphire usually lead to stronger apparent bowing (b> +1.3 eV); while growths initiated using low-temperature buffers on sapphire, followed by high-temperature growth, lead to weaker bowing (b<+ 1.3 eV). Extant data suggests that the correct band-gap bowing parameter for AlXGal-XN is b=+O.62 (N.45) eV.

More Details

The Present Status of the Technological Development of Remote Monitoring Systems

Matter, John C.

Let me begin with some comments about transparency. We all have some perception or vision about the use of transparency for nuclear technology and nuclear non-proliferation. Although we probably have some common understanding of what it implies, there is no precise definition that is agreed upon. One of the most significant ideas in transparency is that it is considered to be a voluntary or unilateral action. The party, or organization, or nation that wants its activities to be transparent voluntarily provides information to other parties with the expectation of receiving some acceptance or good will in return. The organization giving the information determines what information to provide, how much, how often, and when. This is in contrast to official treaties and monitoring regimes, in which specific verification information and activities are prescribed. This should have the advantage for the transparent organization of being less intrusive and less costly than a treaty monitoring regime. Information related to sensitive nuclear technology, proprietary processes, and physical security is more easily protected. The difficultly for both parties, the transparent organization and the information recipients, is in determining what information is necessary for the desired confidence building. It must be recognized that this state of transparency or confidence will only be achieved over an extended period of time, when history confirms that the information was reliable in conveying the true picture.

More Details

Processing and Characterizing Alumina/Aluminum Composites with Tailored Microstructures Formed by Reactive Metal Penetration

Corral, Erica L.

In industry, the need to maximize energy efficiency depends on the availability of suitable advanced materials. Ceramic composites are exemplary materials for many advanced engineering applications because they exhibit good thermal stability, oxidation resistance and enhanced toughness. Presently, ceramic composite fabrication processes are costly, often requiring high temperatures and pressures to achieve reasonable densities. Our research is focused on developing a processing technique, that will allow production of alumina/aluminum composites using relatively low temperatures and without the application of an external force, thus reducing the processing costs. Our composites were formed using Reactive Metal Penetration (RMP), which is a process involving the reaction of molten Al with a dense ceramic preform. The result is a near net shape ceramic/metal composite with interpenetrating phases. The volume fraction of metal in the composites was varied by doping an aluminosilicate ceramic preform with silica. For this study we fabricated composites using pure mullite and mullite doped with 23 and 42 weight percent silica, yielding 18, 25, and 30 volume percent metal in the composites, respectively. Optical and Scanning Electron Microscopy were used to characterize the homogeneity and scale of the microstructure. The scale of the microstructure varied with preform composition, the reaction temperature and with secondary heat treatments. Four-point bend testing was used to evaluate the influence of microstructure on strength and reliability. During these studies a gradient in the microstructure was observed, which we further characterized using microhardness testing. Alumina/aluminum composites formed by RMP show higher toughness then monolithic alumina and have the potential for improved reliability when compared to monolithic ceramics.

More Details

Discussion of Comments from a Peer Review of A Technique for Human Event Anlysis (ATHEANA)

Forester, John A.

In May of 1998, a technical basis and implementation guidelines document for A Technique for Human Event Analysis (ATHEANA) was issued as a draft report for public comment (NUREG-1624). In conjunction with the release of draft NUREG- 1624, a peer review of the new human reliability analysis method its documentation and the results of an initial test of the method was held over a two-day period in June 1998 in Seattle, Washington. Four internationally known and respected experts in HK4 or probabilistic risk assessment were selected to serve as the peer reviewers. In addition, approximately 20 other individuals with an interest in HRA and ATHEANA also attended the peer and were invited to provide comments. The peer review team was asked to comment on any aspect of the method or the report in which improvements could be made and to discuss its strengths and weaknesses. They were asked to focus on two major aspects: Are the basic premises of ATHEANA on solid ground and is the conceptual basis adequate? Is the ATHEANA implementation process adequate given the description of the intended users in the documentation? The four peer reviewers asked questions and provided oral comments during the peer review meeting and provided written comments approximately two weeks after the completion of the meeting. This paper discusses their major comments.

More Details

Analysis of Solar Two Heliostat Tracking Error Sources

Jones, Scott A.

This paper explores the geometrical errors that reduce heliostat tracking accuracy at Solar Two. The basic heliostat control architecture is described. Then, the three dominant error sources are described and their effect on heliostat tracking is visually illustrated. The strategy currently used to minimize, but not truly correct, these error sources is also shown. Finally, a novel approach to minimizing error is presented.

More Details

Electrostriction in Field-Structured Composites: Basis for a Fast Artificial Muscle?

Journal of Chemical Physics

Martin, James E.

The electrostriction of composites consisting of dielectric particles embedded in a gel or elastomer is discussed. It is shown that when these particles are organized by a uniaxial field before gelation, the resulting field-structured composites are expected to exhibit enhanced electrostriction in a uniform field applied along the same axis as the structuring field. The associated stresses might be large enough to form the basis of a polymer-based fast artificial muscle.

More Details

Titanium K-Shell X-Ray Production from High Velocity Wire Arrays Implosions on the 20-MA Z Accelerator

Physics of Plasmas

Deeney, Christopher D.

The advent of the 20-MA Z accelerator [R.B. Spielman, C. Deeney, G.A. Chandler, et al., Phys. Plasmas 5, 2105, (1997)] has enabled implosions of large diameter, high-wire-number arrays of titanium to begin testing Z-pinch K-shell scaling theories. The 2-cm long titanium arrays, which were mounted on a 40-mm diameter, produced between 75{+-}15 to 125{+-}20 kJ of K-shell x-rays. Mass scans indicate that, as predicted, higher velocity implosions in the series produced higher x-ray yields. Spectroscopic analyses indicate that these high velocity implosions achieved peak electron temperatures from 2.7{+-}0.1 to 3.2{+-}0.2 keV and obtained a K-shell emission mass participation of up to 12%.

More Details

Phase Diagram of Iron, Revised-Core Temperatures

Geophysical Research Letter

Holland, K.G.

Shock-wave experiments on iron preheated to 1,573 K conducted from 14 to 73 GPa, yield new data for sound velocities of the {gamma}- and liquid-phases. Melting was observed in the highest pressure ({approximately} 71 {+-} 2 GPa) experiments at calculated shock temperatures of 2,775 {+-} 160 K. This single crossing of the {gamma}-liquid boundary measured here agrees closely with the {gamma}-iron melting line determined by Boehler [1993], Saxena et al. [1993], and Jephcoat and Besedin [1997]. This {gamma}-iron melting curve is {approximately} 300 C lower than that of Shen et al. [1998b] at 80 GPa.

More Details

A Method for Treating Discretization Error in Nondeterministic Analysis

Alvin, Kenneth F.

A response surface methodology-based technique is presented for treating discretization error in non-deterministic analysis. The response surface, or metamodel, is estimated from computer experiments which vary both uncertain physical parameters and the fidelity of the computational mesh. The resultant metamodel is then used to propagate the variabilities in the continuous input parameters, while the mesh size is taken to zero, its asymptotic limit. With respect to mesh size, the metamodel is equivalent to Richardson extrapolation, in which solutions on coarser and finer meshes are used to estimate discretization error. The method is demonstrated on a one dimensional prismatic bar, in which uncertainty in the third vibration frequency is estimated by propagating variations in material modulus, density, and bar length. The results demonstrate the efficiency of the method for combining non-deterministic analysis with error estimation to obtain estimates of total simulation uncertainty. The results also show the relative sensitivity of failure estimates to solution bias errors in a reliability analysis, particularly when the physical variability of the system is low.

More Details

Improved Evolutionary Hybrids for Flexible Ligand Docking in Autodock

Hart, William E.

In this paper we evaluate the design of the hybrid evolutionary algorithms (EAs) that are currently used to perform flexible ligand binding in the Autodock docking software. Hybrid EAs incorporate specialized operators that exploit domain-specific features to accelerate an EA's search. We consider hybrid EAs that use an integrated local search operator to reline individuals within each iteration of the search. We evaluate several factors that impact the efficacy of a hybrid EA, and we propose new hybrid EAs that provide more robust convergence to low-energy docking configurations than the methods currently available in Autodock.

More Details

Deep X-Ray Lithography Based Fabrication of Rare-Earth Based Permanent Magnets and their Applications to Microactuators

Christenson, Todd R.

Precision high aspect-ratio micro molds constructed by deep x-ray lithography have been used to batch fabricate accurately shaped bonded rare-earth based permanent magnets with features as small as 5 microns and thicknesses up to 500 microns. Maximum energy products of up to 8 MGOe have been achieved with a 20%/vol. epoxy bonded melt-spun isotropic Nd2Fe14b powder composite. Using individually processed sub- millimeter permanent sections multipole rotors have been assembled. Despite the fact that these permanent magnet structures are small, their magnetic field producing capability remains the same as at any scale. Combining permanent magnet structures with soft magnetic materials and micro-coils makes possible new and more efficient magnetic microdevices.

More Details

Torsion Testing of Diffusion Bonded LIGA Formed Nickel

Christenson, Todd R.

A test technique has been devised which is suitable for the testing of the bond strength of batch diffusion bonded LIGA or DXRL defined structures. The method uses a torsion tester constructed with the aid of LIGA fabrication and distributed torsion specimens which also make use of the high aspect ratio nature of DXRL based processing. Measurements reveal achieved bond strengths of 130MPa between electroplated nickel with a bond temperature of 450 C at 7 ksi pressure which is a sufficiently low temperature to avoid mechanical strength degradation.

More Details

A Batch Wafer Scale LIGA Assembly and Packaging Technique vai Diffusion Bonding

Christenson, Todd R.

A technique using diffusion bonding (or solid-state welding) has been used to achieve batch fabrication of two- level nickel LIGA structures. Interlayer alignment accuracy of less than 1 micron is achieved using press-fit gauge pins. A mini-scale torsion tester was built to measure the diffusion bond strength of LIGA formed specimens that has shown successful bonding at temperatures of 450"C at 7 ksi pressure with bond strength greater than 100 Mpa. Extensions to this basic process to allow for additional layers and thereby more complex assemblies as well as commensurate packaging are discussed.

More Details

Dynamics of Wet Oxidation of High-AL-Content III-V Materials

Ashby, C.I.H.

Oxidation of layers of high-Al-content III-V materials by water vapor has become the enabling process for high-efficiency vertical cavity surface emitting lasers (VCSELS) and has potential applications for reducing substrate current leakage in GaAs-on-insulator (GOI) MESFETS. Because of the established importance of wet oxidation in optoelectronic devices and its potential applications in electronic devices, it has become increasingly important to understand the mechanism of wet oxidation and how it might be expected to affect both the fabrication and subsequent operation of devices that have been made using this technique. The mechanism of wet oxidation and the consequence of this mechanism for heterostructure design and ultimate device operation are discussed here.

More Details

Multi-Domain Surety Modeling and Analysis for High Assurance Systems

Martinez, M.

Engineering systems are becoming increasingly complex as state of the art technologies am incorporated into designs. Surety modeling and analysis is an emerging science that permits an engineer to qualitatively and quantitatively predict and assess the completeness and predictability of a design. Surety is a term often used in the Department of Defense (DoD) and Department of Energy (DOE) communities, which refers to the integration of safety, security, reliability and performance aspects of design. Current risk assessment technologies for analyzing complex systems fail to adequately describe the problem, thus making assessment fragmented and non-integrated. To address this problem, we have developed a methodology and extensible software tool set to address model integration and complexity for high consequence systems. The MultiGraph Architecture (MGA) facilitates multi-domain, model-integrated modeling and analyses of complex, high-assurance systems. The MGA modeling environment allows the engineer to customize the modeling environment to match a design paradigm representative of the actual design. Previous modeling tools have a point-defined model space that forms the modeler to work in less than optimal environments. Current approaches for the problem to be bounded and constrained by requirements of the modeling tool and not the actual design problem. In some small cases, this is only maximally adequate MM facilitates the implementation of a surety methodology, which is used to represent high assurance systems with respect to safety and reliability. Formal mathematical models am used to correctly describe design safety and reliability functionality and behavioral fictional and behavioral representations of the design w then analyzed using commercial-off-the-shelf tools.

More Details

Dynamics of the Si(111) surface phase transition

Nature

Swartzentruber, Brian

The authors have used low-energy electron microscopy to investigate the dynamics of the Si(111) 7 x 7 {r_arrow} 1 x 1 phase transition. Because the densities of the two phases differ, the phase transformation is analogous to precipitation in bulk systems: additional material must diffuse to the phase boundaries in order for the transformation to occur. By measuring the size evolution of an ensemble of domains, and comparing the results to simulations, they have identified a new mechanism of precipitate growth. The source of material necessary for the transformation is the random creation of atom/vacancy pairs at the surface. This mechanism contrasts sharply with classical theories of precipitation, in which mass transport kinetics determine the rate of transformation.

More Details

Ion and Neutral Species in C(2)F(6) and CHF(3) Dielectric Etch Discharges

Journal Vacuum Science and Technology

Hebner, Gregory A.

Relative concentrations of reactive ions, neutral radicals, resist and substrate etch products have been measured in dielectric etch chemistries using an uncollided beam mass spectrometer / ion extractor from Hiden Analytical. Analysis techniques employed include both electron impact ionization and dissociative ionization of neutral gas, and potential bias extraction of positive ions from the reactor discharge volume. Measurements were made in C{sub 2}F{sub 6} and CHF{sub 3} discharges in an inductively coupled plasma (ICP-GEC) research reactor operating with power densities, pressures, gas compositions and wafer materials typical of those found in etch processing tools. Wafer substrates investigated included blanket silicon wafers and silicon wafers with varying amounts of photo-resist coverage of the surface (20%, 80% and 100%). In C{sub 2}F{sub 6} discharges CF{sub 3}{sup +} was consistently the dominant fluorocarbon ion present, in agreement with published cross sections for dissociative ionization [ 1,2.3,4.5,6]. Smaller concentrations of CF+, CF{sub 2}{sup -}, and C{sub 2}F{sub 5}{sup +}, were also observed, though the dissociative ionization production of C{sub 2}F{sub 5}{sup +} was a factor of five smaller than would be expected from published cross section values. The presence of photo-resist, even in small amounts, was found to produce marked changes in the discharge composition. For example in C{sub 2}F{sub 6} discharges, concentrations of SiF{sub x} etch products relative to concentrations of C{sub x}F{sub y} species were notably diminished and larger concentrations of water vapor were observed when resist was present. In CHF{sub 3} discharges, CF{sub 3}{sup +} and CHF{sub 2}{sup +} were found to be the main species present, along with smaller concentrations of CF{sub 2}{sup +}, CF{sup +}, CHF{sup +}, CH{sup +} and F{sup -}.

More Details

Beam Tilt and Angular Dispersion in Broad-Bandwidth, Nanosecond Optical Parametric Oscillators

Journal of the Optical Society of America B

Smith, Arlee V.

We show that the signal and idler beams generated by certain types of unseeded, nanosecond optical parametric oscillators are tilted and angularly dispersed and have anomalously large bandwidths. This effect is demonstrated in both laboratory measurements and a numerical model. We show how the optical cavity design influences the tilts and how they can be eliminated or minimized. We also determine the conditions necessary to injection seed these parametric oscillators.

More Details

Cesaro-One Summability and Uniform Convergence of Solutions of a Sturm-Liouville System

Real Analysis Exchange

Baty, Roy S.

Galerkin methods are used in separable Hilbert spaces to construct and compute L{sup 2} [0,{pi}] solutions to large classes of differential equations. In this note a Galerkin method is used to construct series solutions of a nonhomogeneous Sturm-Liouville problem defined on [0,{pi}]. The series constructed are shown to converge to a specified du Bois-Reymond function f in L{sup 2} [0,{pi}]. It is then shown that the series solutions can be made to converge uniformly to the specified du Bois-Reymond function when averaged by the Ces{'a}ro-one summability method. Therefore, in the Ces{'a}ro-one sense, every continuous function f on [0,{pi}] is the uniform limit of solutions of nonhomogeneous Sturm-Liouville problems.

More Details

Microseismic Monitoring of the Mounds Drill Cuttings Injection Tests

Warpinski, Norman R.

This paper describes the microseismic mapping of repeated injections of drill cuttings into two separate formations at a test site near Mounds, OK. Injections were performed in sandstone and shale formations at depths of 830 and 595 m, respectively. Typical injection disposal was simulated using multiple small-volume injections over a three-day period, with long shut-in periods interspersed between the injections. Microseismic monitoring was achieved using a 5-level array of wireline-run, triaxial- accelerometer receivers in a monitor well 76 m from the disposed well. Results of the mapped microseismic locations showed that the disposal domti W= generally aligns with the major horizontal stress with some variations in azimuth and that wide variations in height and length growth occurred with continued injections. These experiments show that the cuttings injection process cm be adequately monitored from a downhole, wireline-run receiver array, thus providing process control and environmental assurance.

More Details

Understanding and Tailoring the Mechanical Properties of LIGA Fabricated Materials

Buchheit, Thomas E.

LIGA fabricated materials and components exhibit several processing issues affecting their metallurgical and mechanical properties, potentially limiting their usefulness for MEMS applications. For example, LIGA processing by metal electrodeposition is very sensitive to deposition conditions which causes significant processing lot variations of mechanical and metallurgical properties. Furthermore, the process produces a material with a highly textured lenticular rnicrostructural morphology suggesting an anisotropic material response. Understanding and controlling out-of-plane anisotropy is desirable for LIGA components designed for out-of-plane flexures. Previous work by the current authors focused on results from a miniature servo-hydraulic mechanical test frame constructed for characterizing LIGA materials. Those results demonstrated microstructural and mechanical properties dependencies with plating bath current density in LIGA fabricated nickel (LIGA Ni). This presentation builds on that work and fosters a methodology for controlling the properties of LIGA fabricated materials through processing. New results include measurement of mechanical properties of LIGA fabricated copper (LIGA Cu), out-of-plane and localized mechanical property measurements using compression testing and nanoindentation of LIGA Ni and LIGA Cu.

More Details

An Investigation of Cross-Borehole Ground Penetrating Radar Measurements for Characterizing the 2D Moisture Content Distribution in the Vadose Zone

Alumbaugh, D.

The use of cross-borehole ground penetrating radar (GPR) imaging for determining g the two dimensional (2D) in situ moisture content distribution within the vadose zone is being investigated. The ultimate goal is to use the GPR images as input to a 2D hydrologic inversion scheme for recovering the van Genuchten parameters governing unsaturated ,hydraulic flow. Initial experiments conducted on synthetic data have shown that at least in theory, cross-borehole GPR measurements can provide realistic estimates of the spatial variation in moisture content that are needed for this type of hydrologic inversion scheme. However, the method can not recover exact values of moisture content due to the break down of the empirical expression often employed to convert GPR velocity images to moisture content, and to the smearing nature of the imaging algorithm. To test the applicability of this method in a real world environment cross- borehole GPR measurements were made at a hydrologic/geophysical vadose zone test site in Socorro, New Mexico. Results show that the GPR images compare well with the uncalibrated borehole neutron log data. GPR data acquisition will continue once an infiltration test has started, and the results from these measurements will be employed in a 2D hydrologic inverse scheme.

More Details

Real-Time Analysis of Individual Airborne Microparticles Using Laser Ablation Mass Spectroscopy and Genetically Trained Neural Networks

Parker, Eric P.

We are developing a method for analysis of airborne microparticles based on laser ablation of individual molecules in an ion trap mass spectrometer. Airborne particles enter the spectrometer through a differentially-pumped inlet, are detected by light scattered from two CW laser beams, and sampled by a pulsed excimer laser as they pass through the center of the ion trap electrodes. After the laser pulse, the stored ions are separated by conventional ion trap methods. The mass spectra are then analyzed using genetically-trained neural networks (NNs). A number of mass spectra are averaged to obtain training cases which contain a recognizable spectral signature. Averaged spectra for a bacteria and a non-bacteria are shown to the NNs, the response evaluated, and the weights of the connections between neurodes adjusted by a Genetic Algorithm (GA) such that the output from the NN ranges from 0 for non-bacteria to 1 for bacteria. This process is iterated until the population of the GA converges or satisfies predetermined stopping criteria. Using this type of bipolar training we have obtained generalizing NNs able to distinguish five new bacteria from five new non-bacteria, none of which were used in training the NN.

More Details

Constrained Mathematics for Calculating Logical Safety and Reliability Probabilities with Uncertain Inputs

Hazard Prevention Journal

Cooper, James A.

Calculating safety and reliability probabilities with functions of uncertain variables can yield incorrect or misleading results if some precautions are not taken. One important consideration is the application of constrained mathematics for calculating probabilities for functions that contain repeated variables. This paper includes a description of the problem and develops a methodology for obtaining an accurate solution.

More Details

Biomedical Applications of the Information-efficient Spectral Imaging Sensor (ISIS)

Gentry, S.M.

The Information-efficient Spectral Imaging Sensor (ISIS) approach to spectral imaging seeks to bridge the gap between tuned multispectral and fixed hyperspectral imaging sensors. By allowing the definition of completely general spectral filter functions, truly optimal measurements can be made for a given task. These optimal measurements significantly improve signal-to-noise ratio (SNR) and speed, minimize data volume and data rate, while preserving classification accuracy. The following paper investigates the application of the ISIS sensing approach in two sample biomedical applications: prostate and colon cancer screening. It is shown that in these applications, two to three optimal measurements are sufficient to capture the majority of classification information for critical sample constituents. In the prostate cancer example, the optimal measurements allow 8% relative improvement in classification accuracy of critical cell constituents over a red, green, blue (RGB) sensor. In the colon cancer example, use of optimal measurements boost the classification accuracy of critical cell constituents by 28% relative to the RGB sensor. In both cases, optimal measurements match the performance achieved by the entire hyperspectral data set. The paper concludes that an ISIS style spectral imager can acquire these optimal spectral images directly, allowing improved classification accuracy over an RGB sensor. Compared to a hyperspectral sensor, the ISIS approach can achieve similar classification accuracy using a significantly lower number of spectral samples, thus minimizing overall sample classification time and cost.

More Details

Recent MELCOR and VICTORIA Fission Product Research at the NRC

Bixler, Nathan E.

The MELCOR and VICTORIA severe accident analysis codes, which were developed at Sandia National Laboratories for the U. S. Nuclear Regulatory Commission, are designed to estimate fission product releases during nuclear reactor accidents in light water reactors. MELCOR is an integrated plant-assessment code that models the key phenomena in adequate detail for risk-assessment purposes. VICTORIA is a more specialized fission- product code that provides detailed modeling of chemical reactions and aerosol processes under the high-temperature conditions encountered in the reactor coolant system during a severe reactor accident. This paper focuses on recent enhancements and assessments of the two codes in the area of fission product chemistry modeling. Recently, a model for iodine chemistry in aqueous pools in the containment building was incorporated into the MELCOR code. The model calculates dissolution of iodine into the pool and releases of organic and inorganic iodine vapors from the pool into the containment atmosphere. The main purpose of this model is to evaluate the effect of long-term revolatilization of dissolved iodine. Inputs to the model include dose rate in the pool, the amount of chloride-containing polymer, such as Hypalon, and the amount of buffering agents in the containment. Model predictions are compared against the Radioiodine Test Facility (RTF) experiments conduced by Atomic Energy of Canada Limited (AECL), specifically International Standard Problem 41. Improvements to VICTORIA's chemical reactions models were implemented as a result of recommendations from a peer review of VICTORIA that was completed last year. Specifically, an option is now included to model aerosols and deposited fission products as three condensed phases in addition to the original option of a single condensed phase. The three-condensed-phase model results in somewhat higher predicted fission product volatilities than does the single-condensed-phase model. Modeling of U02 thermochemistry was also improved, and results in better prediction of vaporization of uranium from fuel, which can react with released fission products to affect their volatility. This model also improves the prediction of fission product release rates from fuel. Finally, recent comparisons of MELCOR and VICTORIA with International Standard Problem 40 (STORM) data are presented. These comparisons focus on predicted therrnophoretic deposition, which is the dominant deposition mechanism. Sensitivity studies were performed with the codes to examine experimental and modeling uncertainties.

More Details

Charge Accumulation at a Threading Edge Dislocation in GaN

Applied Physics Letters

Leung, Kevin

We have performed Monte Carlo calculations to determine the charge accumulation on threading edge dislocations in GaN as a function of the dislocation density and background dopant density. Four possible core structures have been examined, each of which produces defect levels in the gap and may therefore act as electron or hole traps. Our results indicate that charge accumulation, and the resulting electrostatic interactions, can change the relative stabilities of the different core structures. Structures having Ga and N vacancies at the dislocation core are predicted to be stable under nitrogen-rich and gallium-rich growth conditions, respectively. Due to dopant depletion at high dislocation density and the multitude of charge states, the line charge exhibits complex crossover behavior as the dopant and dislocation densities vary.

More Details

Clamping of the Linewidth Enhancement Factor in Narrow Quantum-Well GRINSCH Semiconductor Lasers

Applied Physics Letters

Chow, Weng W.

The linewidth enhancement factor in single quantum-well GRINSCH semiconductor lasers is investigated theoretically and experimentally. For thin wells a small linewidth enhancement factor is obtained which clamps with increasing carrier density, in contrast to the monotonous increase observed for thicker wells. Microscopic many-body calculations reproduce the experimental observations attributing the clamping to a subtle interplay between excitation dependent gain shifts and carrier population distributions.

More Details

Band Structure of InGaAsN Alloys and Effects of Presure

Physical Review Letters

Jones, Eric D.

InGaAsN is a new semiconductor alloy system with the remarkable property that the inclusion of only 2% nitrogen reduces the bandgap by more than 30%. In order to help understand the physical origin of this extreme deviation from the typically observed nearly linear dependence of alloy properties on concentration, we have investigated the pressure dependence of state energies using both experimental and theoretical methods. the excited We report measurements of the low temperature photoluminescence of the material for pressures between ambient and 110 kbar. We also describe a simple, density- functional-theory-based approach to calculating the pressure dependence of low lying excitation energies for low concentration alloys. The theoretically predicted pressure dependence of the bandgap is in excellent agreement with the experimental data. Based on the results of our calculations, we suggest an explanation for the strongly non-linear pressure dependence of the bandgap that, surprisingly, does not involve a nitrogen impurity state.

More Details

LEEM Investigation of the Faceting of the Pt Covered W (111) Surface

Surface Science

Kellogg, Gary L.

A low energy electron microscope (LEEM) has been used to investigate the faceting of W(111) as induced by Pt. The atomically rough W(111) surface, when fully covered with a monolayer film of Pt and annealed to temperatures higher than {approximately} 750 K, experiences a significant morphological restructuring: the initially planar surface undergoes a faceting transition and forms three-sided pyramids with {211} faces. The experiments demonstrate the capability of LEEM for imaging both the fully and partially faceted surface. In addition, we have observed the formation of the facets in real time, when Pt is dosed onto the heated surface. We find that the transition from planar surface, to partially faceted surface, and to fully faceted surface proceeds through the nucleation and growth of spatially separated faceted regions.

More Details

It Takes More Than a Cow Bell to Lead a Team

Sickles, L.D.

Leading an audit team goes beyond performance of the duties outlined in any requirement or training course. Anyone can memorize the steps to begin and to complete an audit, but it takes leadership to capitalize on the strengths of each team member and to interact with the auditee. Leadership has been written about and studied for many years. Principles and ideas developed by Covey, Senge, Peters, Blanchard, Hersey, Drucker, Yuki and many, many more but they all come down to some basic issues. There is no magic formula. There are theories and models that when applied work in one situation. Some theories and methodologies work better than others depending on the situation. The presentation today looks at leadership from the perspective of the lead auditor, as he/she has to guide the audit process and deal with many personalities from the audit team to the people being interviewed, Each situation is different, each audit team is different, each audit is unique. The basic principles are applied but it takes understanding leadership to have a successful audit. Applying the Situational Leadership model will enable you to be a good and effective leader and capitalize on the strengths of each team member. It is an invaluable asset to add to your communication toolbox. So let's put our bells on the shelf and put on our learning caps.

More Details

Development of Standards for Characterization of Cathodoluminescence Efficiency

Rohwer, Lauren E.S.

Cathodolurninescence (CL) characterization in a demountable vacuum chamber is an important benchmarking tool for flat-panel display phosphors and screens. The proper way to perform these measurements is to minimize the effects of secondary electrons, excite the phosphor/screen with a uniform beam profile, and maintain a clean vacuum environment. CL measurements are important for preliminary evaluation and lifetesting of phosphor powders and screens prior to incorporation into the FPD. A survey of many CL characterization systems currently in use revealed the myriad of spectroradiometers, colorimeters, electron guns, vacuum pumps, mass spectrometers, etc. that introduce many avenues for error that are often difficult to isolate. A preliminary round-robin experiment was coordinated by Sandia and invoIved five other research groups. The purpose of this experiment was to obtain an indication of equipment capabilities and instrument variations, as well as reliability and consistency of results. Each group was asked to measure the luminence (cd/m{sup 2}) and chromaticity coordinates of a Y{sub 3}Al{sub 2}Ga{sub 3}O{sub 12}: Tb pellet and calculate the luminous efficiency. Pellets were chosen in order to reduce errors associated with processing and handling of powders or screens. Some of the data reported in this experiment were in good agreement while others differed significantly. Determining sources of error in CL measurements is an ongoing effort. By performing this experiment, we were able to identify some of the causes of error and develop a characterization protocol for display phosphors.

More Details

Hidden Challenges to MEMS Commercialization: Design Realization and Reliability Assurance

Miller, Samuel L.

The successful commercialization of MicroElectroMechanical Systems (MEMS) is an essential prerequisite for their implementation in many critical government applications. Several unique challenges must be overcome to achieve this widespread commercialization. Challenges associated with design realization and reliability assurance are discussed, along with approaches taken by Sandia to successfully overcome these challenges.

More Details

A Semiconductor Microlaser for Intracavity Flow Cytometry

Gourley, Paul L.

Semiconductor microlasers are attractive components for micro-analysis systems because of their ability to emit coherent intense light from a small aperture. By using a surface-emitting semiconductor geometry, we were able to incorporate fluid flow inside a laser microcavity for the first time. This confers significant advantages for high throughput screening of cells, particulates and fluid analytes in a sensitive microdevice. In this paper we discuss the intracavity microfluidics and present preliminary results with flowing blood and brain cells.

More Details

Molecular Dynamics Simulations of Hexadecane/Silicalite Interfaces

Grest, Gary S.

The interface between liquid hexadecane and the (010) surface of silicalite was studied by molecular dynamics. The structure of molecules in the interracial region is influenced by the presence of pore mouths on the silicalite surface. For this surface, whose pores are the entrances to straight channels, the concentration profile for partially absorbed molecules is peaked around 10 monomers inside the zeolite. No preference to enter or exit the zeolite based on absorption length is observed except for very small or very large absorption lengths. We also found no preferential conformation of the unabsorbed tails for partially absorbed molecules.

More Details

Prediction and Uncertainty in Computational Modeling of Complex Phenomena: A Whitepaper

Trucano, Timothy G.

This report summarizes some challenges associated with the use of computational science to predict the behavior of complex phenomena. As such, the document is a compendium of ideas that have been generated by various staff at Sandia. The report emphasizes key components of the use of computational to predict complex phenomena, including computational complexity and correctness of implementations, the nature of the comparison with data, the importance of uncertainty quantification in comprehending what the prediction is telling us, and the role of risk in making and using computational predictions. Both broad and more narrowly focused technical recommendations for research are given. Several computational problems are summarized that help to illustrate the issues we have emphasized. The tone of the report is informal, with virtually no mathematics. However, we have attempted to provide a useful bibliography that would assist the interested reader in pursuing the content of this report in greater depth.

More Details

Surface Dependent Electron and Negative Ion Density in Inductively Coupled Discharges

Journal Vacuum Science Technology

Hebner, Gregory A.

Electron and negative ion density have been measured in a modfied Applied Materials DPS metal etch chamber using gas mixtures of BCl{sub 3}, Cl{sub 2} and Ar. Measurements were performed for four dflerent substrate types to examine the influence of surface material on the bulk plasma properties; aluminurq alumina, photoresist and 50 percent patterned aluminum / photoresist. Electron densities in the Cl{sub 2} / BCl{sub 3} mixtures varied from 0.25 to 4 x 10{sup 11} cm{sup -3}. Photodetachment measurements of the negative ion density indicate that the negative ion density was smaller than the electron density and that the electron to negative ion density ratio varied between 1 and 6. The presence of photoresist had a dominant intluence on the electron and negative ion density compared to alumina and aluminum surfaces. In most cases, the electron density above wafers covered with photoresist was a factor of two lower while the negative ion density was a factor of two higher than the aluminum or alumina surfaces.

More Details

Achieving Finite Element Mesh Quality via Optimization of the Jacobian Matrix Norm and Associated Quantities, Part 1 - A Framework for Surface Mesh Optimization

International Journal Numerical Methods in Engineering

Knupp, P.M.

Structured mesh quality optimization methods are extended to optimization of unstructured triangular, quadrilateral, and mixed finite element meshes. N"ew interpretations of well-known nodally-bssed objective functions are made possible using matrices and matrix norms. The matrix perspective also suggests several new objective functions. Particularly significant is the interpretation of the Oddy metric and the Smoothness objective functions in terms of the condition number of the metric tensor and Jacobian matrix, respectively. Objective functions are grouped according to dimensionality to form weighted combinations. A simple unconstrained local optimum is computed using a modiiied N-ewton iteration. The optimization approach was implemented in the CUBIT mesh generation code and tested on several problems. Results were compared against several standard element-based quaIity measures to demonstrate that good mesh quality can be achieved with nodally-based objective functions.

More Details

Insitu-Impregnated Capacitor for Pulse-Discharge Applications

Brooks, R.A.; Harris, J.O.; Pollard, J.R.

Capacitor designs for DOE and/or DoD applications are now driven by two major factors; first, the need to reduce component volumes (attain higher energy density) to permit inclusion of additional components and/ or sensors in systems and second, the continuing budget constraints. The reduced volume and cost must be achieved with no sacrifices in functionality, reliability and safety. Since this study was initiated, we have seen a general, continuous increase in resulting short-time breakdown (STB) values, with particular improvements noted on thermal cycled capacitors. Process and results support our prediction that a 50Y0-650A volume reduction can be achieved with no reduction in performance and reliability.

More Details

Predicting Electronic Failure from Smoke

Martin, Tina T.

Smoke can cause electronic equipment to fail through increased leakage currents and shorts. Sandia National Laboratories is studying the increased leakage currents caused by smoke with varying characteristics. The objective is to develop models to predict the failure of electronic equipment exposed to smoke. This requires the collection of data on the conductivity of smoke and knowledge of critical electrical systems that control high-consequence operations. We have found that conductivity is a function of the type of fuel, how it is burned, and smoke density. Video recordings of highly biased dc circuits exposed in a test chamber show that during a fire, smoke is attracted to high voltages and can build fragile carbon bridges that conduct leakage currents. The movement of air breaks the bridges, so the conductivity decreases after the fire is extinguished and the test chamber is vented. During the fire, however, electronic equipment may not operate correctly, leading to problems for critical operations dependent on electronic control. The potential for electronic failure is highly dependent on the type of electrical circuit, and Sandia National Laboratories plans to include electrical circuit modeling in the failure models.

More Details

The Effect of Electric Fields on Cathodoluminescence from Phosphors

Journal of Applied Physics

Seager, Carleton H.

When external electric fields are applied to phosphors the cathodoluminescence (CL) at low beam energies is strongly affected. This experiment has been carried out on a variety of common phosphors used in cathode ray tube applications, and the electron beam energy, beam current, and electric field dependence of the CL are thoroughly characterized. It is found that the general features of these effects, particular y the strong polarity and beam energy dependence, are consistent with a model which assumes that the main effect of the electric fields is to alter the populations of electrons `and holes at the phosphor surface. This in turn, modulates the non-radiative energy losses that strongly affect the low-beam-energy CL efficiency. Because the external fields are applied without any direct contact to the phosphor material, the large changes seen in the CL decay rapidly as the beam-created electrons and holes polarize, shielding the externally applied bias. These results have important implications for designing phosphors which might be efficient at low electron energies.

More Details

Overview of Recent Results of the Solar Two Test and Evaluations Program

Pacheco, James E.

The Solar Two project is a collaborative, cost-shared project between eleven US industry and utility partners and the U.S. Department of Energy to validate the molten-salt power tower technology. The Solar Two plant, located east of Barstow, CA, comprises 1926 heliostats, a receiver, a thermal storage system and a steam generator system that use molten nitrate salt as the heat transfer fluid and storage media. The steam generator powers a 10 MWe, conventional Rankine cycle turbine. This paper describes the test plan and evaluations currently in progress at Solar Two and provides some recent results.

More Details

Analysis of Strategies to Improve Heliostat Tracking at Solar Two

Jones, Scott A.

This paper investigates dhlerent strategies that can be used to improve the tracking accuracy of heliostats at Solar Two. The different strategies are analyzed using a geometrical error model to determine their performance over the course of a day. By using the performance of heliostats in representative locations of the field aad on representative days of the year, an estimate of the annual performance of each strategy is presented.

More Details

Fluid Dynamics in Sucker Rod Pumps

Cutler, Robert P.

Sucker rod pumps are installed in approximately 90% of all oil wells in the U.S. Although they have been widely used for decades, there are many issues regarding the fluid dynamics of the pump that have not been fully investigated. A project was conducted at Sandia National Laboratories to develop unimproved understanding of the fluid dynamics inside a sucker rod pump. A mathematical flow model was developed to predict pressures in any pump component or an entire pump under single-phase fluid and pumping conditions. Laboratory flow tests were conducted on instrumented individual pump components and on a complete pump to verify and refine the model. The mathematical model was then converted to a Visual Basic program to allow easy input of fluid, geometry and pump parameters and to generate output plots. Examples of issues affecting pump performance investigated with the model include the effects of viscosity, surface roughness, valve design details, plunger and valve pressure differentials, and pumping rate.

More Details

Multiple Input Electrode Gap Control During Vacuum Arc Remelting

Williamson, Rodney L.

Accurate control of the electrode gap in a vacuum arc remelting (VAR) furnace has been a goal of melters for many years. The size of the electrode gap has a direct influence on ingot solidification structure. At the high melting currents (30 to 40 kA) typically used for VAR of segregation insensitive Ti and Zr alloys, process voltage is used as an indicator of electrode gap, whereas drip-short frequency (or period) is usually used at the lower currents (5 to 8 kA) employed during VAR of superalloys. Modem controllers adjust electrode position or drive velocity to maintain a voltage or drip-short frequency (or period) set-point. Because these responses are non-linear functions of electrode gap and melting current, these controllers have a limited range for which the feedback gains are valid. Models are available that relate process voltage and drip-short frequency to electrode gap. These relationships may be used to linearize the controller feedback signal. An estimate of electrode gap may then be obtained by forming a weighted sum of the independent gap estimates obtained from the voltage and drip-short signals. By using multiple independent measures to estimate the gap, a controller that is less susceptible to process disturbances can be developed. Such a controller was designed, built and tested. The tests were carried out at Allvac Corporation during VAR of 12Cr steel at intermediate current levels.

More Details

Introduction to Special Issue on PV Systems Performance and Reliability

Progress in Photovoltaics

Post, Harold N.

The papers in this special issue have been selected from the systems and balance-of- systems sessions at the 1998 Photovoltaic Performance and Reliability Workshop. The workshop was held November 3-5, 1998 and hosted by the Florida Solar Energy Center, Cocoa Beach, Florida under sponsorship of the US National Center for Photovoltaics (National Renewable Energy Laboratory and Sandia National Laboratories). The topics and issues addressed by these papers were identified in an invited review paper on PV systems by the guest editors. Their work was published earlier this year in Volume 7, Number 1 of Progress in Photovoltaics ('Photovoltaic Systems: An End-of-Millennium Review'). Experts in the PV community were asked to make presentations on these topics at the workshop. The papers that follow are the results of that effort. The papers are organized by topic: (1) codes and standards; (2) reliability; (3) design issues; and (4) commercialization.

More Details

What Changed in Article 690-Solar Photovoltaic Systems- of the 1999 National Electrical Code?

Journal of the International Electrical Inspectors Association

Bower, Ward

Article 690, Solar Photovoltaic Power Systems, has been in the National Electrical Code (NEC) since 1984. An NFPA-appointed Task Group for Article 690 proposed changes to Article 690 for both the 1996 and 1999 codes. The Task Group, supported by more than 50 professionals from throughout the photovoltaic (PV) industry, met seven times during the 1999 code cycle to integrate the needs of the industry with the needs of electrical inspectors and end users to ensure the safety of PV systems. The Task Group proposed 57 changes to Article 690, and all the changes were accepted in the review process. The performance and cost of PV installations were always a consideration as these changes were formed but safety was the number-one priority. All of the proposals were well substantiated and coordinated throughout the PV industry and with representatives of Underwriters Laboratories, Inc (UL). The most significant changes that were made in Article 690 for the 1999 NEC along with some of the rationale are discussed in the remainder of this article.

More Details

Reflectance Infrared Spectroscopy on Operating Surface Acoustic Wave Chemical Sensors During Exposure to Gas-Phase Analytes

Analytical Chemistry

Ricco, A.J.

We have developed instrumentation to enable the combination of surface acoustic wave (SAW) sensor measurements with direct, in-situ molecular spectroscopic measurements to understand the response of the SAW sensors with respect to the interfacial chemistry of surface-confined sensing films interacting with gas-phase analytes. Specifically, the instrumentation and software was developed to perform in-situ Fourier-transform infrared external-reflectance spectroscopy (FTIR-ERS) on operating SAW devices during dosing of their chemically modified surfaces with analytes. By probing the surface with IR spectroscopy during gas exposure, it is possible to understand in unprecedented detail the interaction processes between the sorptive SAW coatings and the gaseous analyte molecules. In this report, we provide details of this measurement system, and also demonstrate the utility of these combined measurements by characterizing the SAW and FTIR-ERS responses of organic thin-film sensor coatings interacting with gas-phase analytes.

More Details

Application of the Solubility Parameter Concept to the Design of Chemiresistor Arrays

Journal of Electrochemical Society

Hughes, Robert C.

Arrays of unheated chemically sensitive resistors (chemiresistors) can serve as extremely small, low-power-consumption sensors with simple read-out electronics. We report here results on carbon-loaded polymer composites, as well as polymeric ionic conductors, as chemiresistor sensors. We use the volubility parameter concept to understand and categorize the chemiresistor responses and, in particular, we compare chemiresistors fabricated from polyisobutylene (PIB) to results from PIB-coated acoustic wave sensors. One goal is to examine the possibility that a small number of diverse chemiresistors can sense all possible solvents-the "Universal Solvent Sensor Array". keywords: chemiresistor, volubility parameter, chemical sensor

More Details

Cycling Endurance of SONOS Non-Volatile Memory Stacks Prepared with Nitrided SiO(2)/Si(100) Intefaces

Electron Device Letters

Habermehl, Scott D.

The effects of nitrided SiO{sub 2}/Si(100) interfaces upon cycling endurance in silicon-oxide-nitride-oxide-silicon (SONOS) non-volatile memory transistors are investigated. Analysis of MOSFET sub-threshold characteristics indicate cycling degradation to be a manifestation of interface state (D{sub it}) generation at the tunnel oxide/silicon interface. After 10{sup 6} write/erase cycles, SONOS film stacks prepared with nitrided tunnel oxides exhibit enhanced cycling endurance with {Delta}D{sub it}=3x10{sup 12} V{sup -1}cm{sup -2}, compared to {Delta}D{sub it}=2x10{sup 13} V{sup -l}cm{sup -2} for non-nitrided tunnel oxides. Additionally, if the capping oxide is formed by steam oxidation, rather than by deposition, SONOS stacks prepared with non-nitrided tunnel oxides exhibit endurance characteristics similar to stacks with nitrided tunnel oxides. From this observation it is concluded that latent nitridation of the tunnel oxidehilicon interface occurs during steam oxide cap formation.

More Details

Transport, Growth Mechanisms, and Material Quality in GaN Epitaxial Lateral Overgrowth

Coltrin, Michael E.

Growth kinetics, mechanisms, and material quality in GaN epitaxial lateral over-growth (ELO) were examined using a single mask of systematically varied patterns. A 2-D gas phase reaction/diffusion model describes how transport of the Ga precursor to the growth surface enhances the lateral rate in the early stages of growth. In agreement with SEM studies of truncated growth runs, the model also predicts the dramatic decrease in the lateral rate that occurs as GaN over-growth reduces the exposed area of the mask. At the point of convergence, a step-flow coalescence mechanism is observed to fill in the area between lateral growth-fronts. This alternative growth mode in which a secondary growth of GaN is nucleated along a single convergence line, may be responsible for producing smooth films observed to have uniform cathodoluminescence (CL) when using 1{micro}m nucleation zones. Although emission is comprised of both UV ({approximately}365nm) and yellow ({approximately}550nm) components, the spectra suggest these films have reduced concentrations of threading dislocations normally associated with non-radiative recombination centers and defects known to accompany growth-front convergence lines.

More Details

Optical Detection of Aqueous Phase Analytes via Host-Guest Interactions on a Lipid Membrane Surface

Sasaki, Darryl Y.

The organization and assembly of molecules in cellular membranes is orchestrated through the recognition and binding of specific chemical signals. A simplified version of the cellular membrane system has been developed using a synthetically prepared membrane receptor incorporated into a biologically derived lipid bilayer. Through an interplay of electrostatic and van der Wards interactions, aggregation or dispersion of molecular components could be executed on command using a specific chemical signal. A pyrene fluorophore was used as an optical probe to monitor the aggregational state of the membrane receptors in the bilayer matrix. The pyrene excimer emission to monomer emission (E/M) intensity ratio gave a relative assessment of the local concentration of receptors in the membrane. Bilayers were prepared with receptors selective for the divalent metal ions of copper, mercury, and lead. Addition of the metal ions produced a rapid dispersion of aggregated receptor components at nano- to micro-molar concentrations. The process was reversible by sequestering the metal ions with EDTA. Receptors for proteins and polyhistidine were also prepared and incorporated into phosphatidylcholine lipid bilayers. In this case, the guest molecules bound to the membrane through multiple points of interaction causing aggregation of initially dispersed receptor molecules. The rapid, selective, and sensitive fluorescence optical response of these lipid assemblies make them attractive in sensor applications for aqueous phase metal ions and polypeptides.

More Details

The New 1999 National Electrical Code Coupled with New Standards Clarify Requirements for Installations of Photovoltaic Systems in the U.S

Progress in Photovoltaics - Research and Applications

Bower, Ward

The National Electrical Code@ (NEC@) focuses primarily on electrical system installation requirements in the U.S. The NEC addresses both fire and personnel safety. This paper will describe recent efforts of the PV industry in the U.S. and the resulting requirements in the 1999 National Electrical Code-- Article 690 --Solar Photovoltaic Systems. The Article 690 requirements spell out the PV-unique requirements for safe installations of PV systems in the U.S.A. This paper provides an overview of the most significant changes that appear in Article 690 of the 1999 edition of the NEC. The related and coordinated efforts of the other standards- making groups will also be briefly reviewed.

More Details

Accurate Method for Determining Adhesion of Cantilever Beams

Journal of Applied Physics

De Boer, Maarten P.

Using surface micromachined samples, we demonstrate the accurate measurement of cantilever beam adhesion by using test structures which are adhered over long attachment lengths. We show that this configuration has a deep energy well, such that a fracture equilibrium is easily reached. When compared to the commonly used method of determining the shortest attached beam, the present method is much less sensitive to variations in surface topography or to details of capillary drying.

More Details

Heat Pipe Solar Receiver Development Activities at Sandia National Laboratories

Adkins, Douglas R.

Over the past decade, Sandia National Laboratories has been involved in the development of receivers to transfer energy from the focus of a parabolic dish concentrator to the heater tubes of a Stirling engine. Through the isothermal evaporation and condensation of sodium. a heat-pipe receiver can efficiently transfer energy to an engine's working fluid and compensate for irregularities in the flux distribution that is delivered by the concentrator. The operation of the heat pipe is completely passive because the liquid sodium is distributed over the solar-heated surface by capillary pumping provided by a wick structure. Tests have shown that using a heat pipe can boost the system performance by twenty percent when compared to directly illuminating the engine heater tubes. Designing heat pipe solar receivers has presented several challenges. The relatively large area ({approximately}0.2 m{sup 2}) of the receiver surface makes it difficult to design a wick that can continuously provide liquid sodium to all regions of the heated surface. Selecting a wick structure with smaller pores will improve capillary pumping capabilities of the wick, but the small pores will restrict the flow of liquid and generate high pressure drops. Selecting a wick that is comprised of very tine filaments can increase the permeability of the wick and thereby reduce flow losses, however, the fine wick structure is more susceptible to corrosion and mechanical damage. This paper provides a comprehensive review of the issues encountered in the design of heat pipe solar receivers and solutions to problems that have arisen. Topics include: flow characterization in the receiver, the design of wick systems. the minimization of corrosion and dissolution of metals in sodium systems. and the prevention of mechanical failure in high porosity wick structures.

More Details

Software Reliability Cases: The Bridge Between Hardware, Software and System Safety and Reliability

Peercy, David E.

High integrity/high consequence systems must be safe and reliable; hence it is only logical that both software safety and software reliability cases should be developed. Risk assessments in safety cases evaluate the severity of the consequences of a hazard and the likelihood of it occurring. The likelihood is directly related to system and software reliability predictions. Software reliability cases, as promoted by SAE JA 1002 and 1003, provide a practical approach to bridge the gap between hardware reliability, software reliability, and system safety and reliability by using a common methodology and information structure. They also facilitate early insight into whether or not a project is on track for meeting stated safety and reliability goals, while facilitating an informed assessment by regulatory and/or contractual authorities.

More Details

Status of the Boeing Dish Engine Critical Component Project

Brau, H.W.; Diver, R.B.; Nelving, H.; Stone, K.W.

The Boeing Company's Dish Engine Critical Component (DECC) project started in April of 1998. It is a continuation of a solar energy program started by McDonnell Douglas (now Boeing) and United Stirling of Sweden in the mid 1980s. The overall objectives, schedule, and status of this project are presented in this paper. The hardware test configuration, hardware background, operation, and test plans are also discussed. A summary is given of the test data, which includes the daily power performance, generated energy, working-gas usage, mirror reflectivity, solar insolation, on-sun track time, generating time, and system availability. The system performance based upon the present test data is compared to test data from the 1984/88 McDonnell Douglas/United Stirling AB/Southem California Edison test program. The test data shows that the present power, energy, and mirror performance is comparable to when the hardware was first manufactured 14 years ago.

More Details

Fabrication and Characterization of PZT Thin-Film on Bulk Micromachined Si Motion Detectors

Garino, Terry J.

Motion detectors consisting of Pb(Zr{sub x}Ti{sub (1{minus}x)})O{sub 3} (PZT) thin films, between platinum electrodes, on micromachined silicon compound clamped-clamped or cantilever beam structures were fabricated using either hot KOH or High Aspect Ratio Silicon Etching (HARSE) to micromachine the silicon. The beams were designed such that a thicker region served as a test mass that produced stress at the top of the membrane springs that supported it when the object to which the detector was mounted moved. The PZT film devices were placed on these membranes to generate a charge or a voltage in response to the stress through the piezoelectric effect. Issues of integration of the PZT device fabrication process with the two etching processes are discussed. The effects of PZT composition and device geometry on the response of the detectors to motion is reported and discussed.

More Details

Fabrication of MEMS Devices by Powder-Filling into DXRL-Formed Molds

Garino, Terry J.

We have developed a variety of processes for fabricating components for micro devices based on deep x-ray lithography (DXRL). Although the techniques are applicable to many materials, we have demonstrated them using hard (Nd{sub 2}Fe{sub 14}B) and soft (Ni-Zn ferrite) magnetic materials because of the importance of these materials in magnetic micro-actuators and other devices and because of the difficulty fabricating them by other means. The simplest technique involves pressing a mixture of magnetic powder and a binder into a DXRL-formed mold. In the second technique, powder is pressed into the mold and then sintered to densify. The other two processes involve pressing at high temperature either powder or a dense bulk material into a ceramic mold that was previously made using a DXRL mold. These techniques allow arbitrary 2-dimensional shapes to be made 10 to 1000 micrometers thick with in-plane dimensions as small as 50 micrometers and dimensional tolerances in the micron range. Bonded isotropic Nd{sub 2}Fe{sub 14}B micromagnets made by these processes had an energy product of 7 MGOe.

More Details

Sandia National Laboratories Institutional Plan: FY 1999-2004

Garber, D.P.

This Institutional Plan is the most comprehensive yearly "snapshot" available of Sandia National Laboratories' major programs, facilities, human resources, and budget. The document also includes overviews of our missions, organization, capabilities, planning functions, milestones, and accomplishments. The document's purpose is to provide the above information to the US Department of Energy, key congressional committees, Sandia management, and other present and potential customers. Chapter 2 presents information about Sandia's mission and summarizes our recent revision of Sandia's Strategic Plan. Chapter 3 presents an overview of Sandia's strategic objectives, chapter 4 lists laboratory goals and milestones for FY 1999, and chapter 5 presents our accomplishments during FY 1998. Chapters 3 through 5 are organized around our eight strategic objectives. The four primary objectives cover nuclear weapons responsibilities, nonproliferation and materials control, energy and critical infrastructures, and emerging national security threats. The major programmatic initiatives are presented in chapter 7. However, the programmatic descriptions in chapter 6 and the Associated funding tables in chapter 9 continue to be presented by DOE Budget and Reporting Code, as in previous Sandia institutional plans. As an aid to the reader, the four primary strategic objectives in chapter 3 are cross-referenced to the program information in chapter 6.

More Details

Numerical Modeling Tools for the Prediction of Solution Migration Applicable to Mining Site

Vaughn, Palmer

Mining has always had an important influence on cultures and traditions of communities around the globe and throughout history. Today, because mining legislation places heavy emphasis on environmental protection, there is great interest in having a comprehensive understanding of ancient mining and mining sites. Multi-disciplinary approaches (i.e., Pb isotopes as tracers) are being used to explore the distribution of metals in natural environments. Another successful approach is to model solution migration numerically. A proven method to simulate solution migration in natural rock salt has been applied to project through time for 10,000 years the system performance and solution concentrations surrounding a proposed nuclear waste repository. This capability is readily adaptable to simulate solution migration around mining.

More Details

Robots Working with Hazardous Materials

SWE; the magazine the Society of Women Engineers

Fahrenholtz, J.

While many research and development activities take place at Sandia National Laboratories' Intelligent Systems and Robotics Center (ISRC), where the "rubber meets the road" is in the ISRC'S delivered systems. The ISRC has delivered several systems over the last few years that handle hazardous materials on a daily basis, and allow human workers to move to a safer, supervisory role than the "hands-on" operations that they used to perform. The ISRC at Sandia performs a large range of research and development activities, including development and delivery of one-of-a-kind robotic systems for use with hazardous materials. Our mission is to create systems for operations where people can't or don't want to perform the operations by hand, and the systems described in this article are several of our first-of-a-kind deliveries to achieve that mission.

More Details

Spiraling Edge: Fast Surface Reconstruction from Partially Organized Sample Points

Crossno, Patricia J.

Many applications produce three-dimensional points that must be further processed to generate a surface. Surface reconstruction algorithms that start with a set of unorganized points are extremely time-consuming. Often, however, points are generated such that there is additional information available to the reconstruction algorithm. We present a specialized algorithm for surface reconstruction that is three orders of magnitude faster than algorithms for the general case. In addition to sample point locations, our algorithm starts with normal information and knowledge of each point's neighbors. Our algorithm produces a localized approximation to the surface by creating a star-shaped triangulation between a point and a subset of its nearest neighbors. This surface patch is extended by locally triangulating each of the points along the edge of the patch. As each edge point is triangulated, it is removed from the edge and new edge points along the patch's edge are inserted in its place. The updated edge spirals out over the surface until the edge encounters a surface boundary and stops growing in that direction, or until the edge reduces to a small hole that fills itself in.

More Details

Metal-Hydrogen Phase Diagrams in the Vicinity of Melting Temperatures

Shapovalov, V.I.

Hydrogen-metal interaction phenomena belong to the most exciting challenges of today's physical metallurgy and physics of solids due to the uncommon behavior of hydrogen in condensed media and to the need for understanding hydrogen's strong negative impact on properties of some high-strength steels and.alloys. The paper cites and summarizes research data on fundamental thermodynamic characteristics of hydrogen in some metals that absorb it endothermally at elevated temperatures. For a number of metal-hydrogen systems, information on some phase diagrams previously not available to the English-speaking scientific community is presented.

More Details

Production of Gas-Solid Structures in Aluminum and Nickel Alloys by Gasar Processing

Baldwin, Michael D.

Experimental data on directional and bulk solidification of hydrogen-charged samples of aluminum alloy A356 and nickel alloy Inconel 718 are discussed. The solidification structure of the porous zone is shown to be dependent on many process variables. Of these variables, hydrogen content in the melt prior to solidification, and furnace atmospheric pressure during solidification play the decisive role. Also important are the furnace atmosphere composition, the solidification velocity, and the temperature distribution of the liquid metal inside the mold.

More Details

ESR Process Instabilities while Melting Pipe Electrodes

Melgaard, David K.

With the demonstration of the viability of using the electroslag remelting process for the decontamination of radionuclides, interest has increased in examining the unique aspects associated with melting steel pipe electrodes. These electrodes consist of several nested pipes, welded concentrically to atop plate. Since these electrodes can be half as dense as a solid electrode, they present unique challenges to the standard algorithms used in controlling the melting process. Naturally the electrode must be driven down at a dramatically increased speed. However, since the heat transfer is greatly influenced and enhanced with the increased area to volume ratio, considerable variation in the melting rate of the pipes has been found. Standard control methods can become unstable as a result of the variation at increased speeds, particularly at shallow immersion depths. The key to good control lies in the understanding of the melting process. Several experiments were conducted to observe the characteristics of the melting using two different control modes. By using a pressure transducer to monitor the pressure inside the pipes, the venting of the air trapped inside the electrode was observed. The measurements reveal that for a considerable amount of time. the pipes are not completely immersed in the slag, allowing the gas inside to escape without the formation of bubbles. This result has implications for the voltage swing as well as for the decontamination reactions.

More Details

Highly Dispersed Pseudo-Homogeneous and Heterogeneous Catalysts Synthesized via Inverse Micelle Solutions for the Liquefaction of Coal

Martino, Anthony

The mission of this project was to use inverse micelle solutions to synthesize nanometer sized metal particles and test the particles as catalysts in the liquefaction of coal and other related reactions. The initial focus of the project was the synthesis of iron based materials in pseudo-homogeneous form. The frost three chapters discuss the synthesis, characterization, and catalyst testing in coal liquefaction and model coal liquefaction reactions of iron based pseudo-homogeneous materials. Later, we became interested in highly dispersed catalysts for coprocessing of coal and plastic waste. Bifunctional catalysts . to hydrogenate the coal and depolymerize the plastic waste are ideal. We began studying, based on our previously devised synthesis strategies, the synthesis of heterogeneous catalysts with a bifunctional nature. In chapter 4, we discuss the fundamental principles in heterogeneous catalysis synthesis with inverse micelle solutions. In chapter 5, we extend the synthesis of chapter 4 to practical systems and use the materials in catalyst testing. Finally in chapter 6, we return to iron and coal liquefaction now studied with the heterogeneous catalysts.

More Details

Inductively Coupled Plasma Etching of III-Nitrides in Cl(2)/Xe,Cl(2)/Ar and Cl(2)/He

Materials Research Society Internet Journal of Nitride Semiconductor Research

Shul, Randy J.

The role of additive noble gases He, Ar and Xe to C&based Inductively Coupled Plasmas for etching of GaN, AIN and InN were examined. The etch rates were a strong function of chlorine concentration, rf chuck power and ICP source power. The highest etch rates for InN were obtained with C12/Xe, while the highest rates for AIN and GaN were obtained with C12/He. Efficient breaking of the 111-nitrogen bond is crucial for attaining high etch rates. The InN etching was dominated by physical sputtering, in contrast to GaN and AIN. In the latter cases, the etch rates were limited by initial breaking of the III-nitrogen bond. Maximum selectivities of -80 for InN to GaN and InN to AIN were obtained.

More Details

Behavior of W and WSi(x) Contact Metallization on n- and p- Type GaN

Materials Research Society Internet Journal of Nitride Semiconductor Research

Shul, Randy J.

Sputter-deposited W-based contacts on p-GaN (N{sub A} {approximately} 10{sup 18} cm{sup {minus}3}) display non-ohmic behavior independent of annealing temperature when measured at 25 C. The transition to ohmic behavior occurs above {approximately} 250 C as more of the acceptors become ionized. The optimum annealing temperature is {approximately} 700 C under these conditions. These contacts are much more thermally stable than the conventional Ni/Au metallization, which shows a severely degraded morphology even at 700 C. W-based contacts may be ohmic as-deposited on very heavily doped n-GaN, and the specific contact resistance improves with annealing up to {approximately} 900 C.

More Details

Magnetic-Field-Induced V-Shaped Quantized Conductance Staircase in a Double-Layer Quantum Point Contact

Physical Review B (Rapid Communication)

Lyo, Sungkwun K.

We show that the low-temperature conductance (G) of a quantum point contact consisting of ballistic tunnel-coupled double-layer quantum well wires is modulated by an in-layer magnetic field B{sub {parallel}} perpendicular to the wires due to the anticrossing. In a system with a small g factor, B{sub {parallel}} creates a V-shaped quantum staircase for G, causing it to decrease in steps of 2e{sup 2}/{Dirac_h} to a minimum and then increase to a maximum value, where G may saturate or decrease again at higher B{sub {parallel}}'s. The effect of B{sub {parallel}}-induced mass enhancement and spin splitting is studied. The relevance of the results to recent data is discussed.

More Details

Cyclization Phenomena in the Sol-Gel Polymerization of a,w-Bis(triethoxysilyl)alkanes and Incorporation of the Cyclic Structures into Network Silsesquioxane Polymers

Journal of the Americna Chemical Society

Loy, Douglas A.

Intramolecular cyclizations during acid-catalyzed, sol-gel polymerizations of ct,co- bis(tietioxysilyl)aWmes substintidly lengtien gelties formonomers witietiylene- (l), propylene- (2), and butylene-(3)-bridging groups. These cyclizations reactions were found, using mass spectrometry and %i NMR spectroscopy, to lead preferentially to monomeric and dimeric products based on six and seven membered disilsesquioxane rings. 1,2- Bis(triethoxysilyl)ethane (1) reacts under acidic conditions to give a bicyclic drier (5) that is composed of two annelated seven membered rings. Under the same conditions, 1,3- bis(triethoxysilyl)propane (2), 1,4-bis(triethoxysilyl)butane (3), and z-1,4- bis(triethoxysilyl)but-2-ene (10) undergo an intramolecular condensation reaction to give the six membemd and seven membered cyclic disilsesquioxanes 6, 7, and 11. Subsequently, these cyclic monomers slowly react to form the tricyclic dirners 8,9 and 12. With NaOH as polymerization catalyst these cyclic silsesquioxanes readily ~aeted to afford gels that were shown by CP MAS z%i NMR and infr=d spectroscopes to retain some cyclic structures. Comparison of the porosity and microstructwe of xerogels prepared from the cyclic monomers 6 and 7 with gels prepared directly from their acyclic precursors 2 and 3, indicate that the final pore structure of the xerogels is markedly dependent on the nature of the precursor. In addition, despite the fact that the monomeric cyclic disilsesquioxane species can not be isolated from 1-3 under basic conditions due to their rapid rate of gelation, spectroscopic techniques also detected the presence of the cyclic structures in the resulting polymeric gels.

More Details

Laboratory Simulation of Response to a Shock Environment

Simmermacher, Todd W.

The focus of this work will be to simulate a harsh, blast environment on a space structure. Data from a reverse Hopkinson bar (RHB) test is used to generate the response to a symmetric, distributed load. The RHB generates a high-amplitude, high-frequency content, concentrated pulse that excites components at near-blast levels. The transfer functions generated at discrete points, with the RHB, are used to generate an experimental model of the structure, which is then used in conjunction with the known pressure distribution, to estimate the component response to a blast. The shock spectrum of the predicted response and the actual response compared well in two of the three cases presented.

More Details

Accident Sequence Precursor Program Large Early Release Frequency Model Development

Duran, Felicia A.

The objectives for the ASP large early release frequency (LERF) model development work is to build a Level 2 containment response model that would capture all of the events necessary to define LERF as outlined in Regulatory Guide 1.174, can be directly interfaced with the existing Level 1 models, is technically correct, can be readily modified to incorporate new information or to represent another plant, and can be executed in SAPHIRE. The ASP LERF models being developed will meet these objectives while providing the NRC with the capability to independently assess the risk impact of plant-specific changes proposed by the utilities that change the nuclear power plants' licensing basis. Together with the ASP Level 1 models, the ASP LERF models provide the NRC with the capability of performing equipment and event assessments to determine their impact on a plant's LERF for internal events during power operation. In addition, the ASP LERF models are capable of being updated to reflect changes in information regarding the system operations and phenomenological events, and of being updated to assess the potential for early fatalities for each LERF sequence. As the ASP Level 1 models evolve to include more analysis capabilities, the LERF models will also be refined to reflect the appropriate level of detail needed to demonstrate the new capabilities. An approach was formulated for the development of detailed LERF models using the NUREG-1150 APET models as a guide. The modifications to the SAPHIRE computer code have allowed the development of these detailed models and the ability to analyze these models in a reasonable time. Ten reference LERF plant models, including six PWR models and four BWR models, which cover a wide variety of containment and nuclear steam supply systems designs, will be complete in 1999. These reference models will be used as the starting point for developing the LERF models for the remaining nuclear power plants.

More Details

Theory of wire number scaling in wire-array Z pinches

Physics of Plasmas

Desjarlais, Michael P.

Pulsed-power-driven Z pinches, produced by imploding cylindrical arrays of many wires, have generated very high x-ray radiation powers (> 200 TW) and energies (2 MJ). Experiments have revealed a steady improvement in Z-pinch performance with increasing wire number at fixed total mass and array radius. The dominant mechanism acting to limit the performance of these devices is believed to be the Rayleigh-Taylor instability which broadens the radially imploding plasma sheath and consequently reduces the peak radiation power. A model is presented which describes an amplification over the two-dimensional Rayleigh-Taylor growth rate brought about by kink-like forces on the individual wires. This amplification factor goes to zero as the number of wires approaches infinity. This model gives results which are in good agreement with the experimental data and provides a scaling for wire-array Z pinches. © 1999 American Institute of Physics.

More Details

Rapid thermal processing of implanted GaN up to 1500°C

MRS Internet Journal of Nitride Semiconductor Research

Shul, Randy J.

GaN implanted with donor(Si, S, Se, Te) or acceptor (Be, Mg, C) species was annealed at 900-1500°C using AlN encapsulation. No redistribution was measured by SIMS for any of the dopants and effective diffusion coefficients are ≤2×10-13 cm2 · s-1 at 1400°C, except Be, which displays damage-enhanced diffusion at 900°C and is immobile once the point defect concentration is removed. Activation efficiency of ∼90% is obtained for Si at 1400°C. TEM of the implanted material shows a strong reduction in lattice disorder at 1400-1500°C compared to previous results at 1100°C. There is minimal interaction of the sputtered AlN with GaN under our conditions, and it is readily removed selectively with KOH.

More Details

Thin-film silica sol-gels doped with ion responsive fluorescent lipid bilayers

Proceedings of SPIE - The International Society for Optical Engineering

Sasaki, Darryl Y.

A metal ion sensitive, fluorescent lipid-bilayer material (5% PSIDA/DSPC) was successfully immobilized in a silica matrix using a tetramethoxysilane (TMOS) sol-gel procedure. The sol-gel immobilization method was quantitative in the entrapment of self-assembled lipid-bilayers and yielded thin films for facile configuration to optical fiber platforms. The silica matrix was compatible with the solvent sensitive lipid bilayers and provided physical stabilization as well as biological protection. Immobilization in the silica sol-gel produced an added benefit of improving the bilayer's metal ion sensitivity by up to two orders of magnitude. This enhanced performance was attributed to a preconcentrator effect from the anionic surface of the silica matrix. Thin gels (193 micron thickness) were coupled to a bifurcated fiber optic bundle to produce a metal ion sensor probe. Response times of 10 - 15 minutes to 0.1 M CuCl2 were realized with complete regeneration of the sensor using an ethylenediaminetetraacetic acid (EDTA) solution.

More Details

Coupled simulations of mechanical deformation and microstructural evolution using polycrystal plasticity and Monte Carlo Potts models

Materials Research Society Symposium - Proceedings

Battaile, Corbett C.

The microstructural evolution of heavily deformed polycrystalline Cu is simulated by coupling a constitutive model for polycrystal plasticity with the Monte Carlo Potts model for grain growth. The effects of deformation on boundary topology and grain growth kinetics are presented. Heavy deformation leads to dramatic strain-induced boundary migration and subsequent grain fragmentation. Grain growth is accelerated in heavily deformed microstructures. The implications of these results for the thermomechanical fatigue failure of eutectic solder joints are discussed.

More Details

GaN metal oxide semiconductor field effect transistors

Solid-State Electronics

Baca, Albert G.

A GaN based depletion mode metal oxide semiconductor field effect transistor (MOSFET) was demonstrated using Ga2O3(Gd2O3) as the gate dielectric. The MOS gate reverse breakdown voltage was >35 V which was significantly improved from 17 V of Pt Schottky gate on the same material. A maximum extrinsic transconductance of 15 mS/mm was obtained at Vds = 30 V and device performance was limited by the contact resistance. A unity current gain cut-off frequency, fT, and maximum frequency of oscillation, fmax of 3.1 and 10.3 GHz, respectively, were measured at Vds = 25 V and Vgs = -20 V.

More Details

Microscopic theory of optical nonlinearities and spontaneous emission lifetime in group-III nitride quantum wells

Physical Review B - Condensed Matter and Materials Physics

Chow, Weng W.

Microscopic calculations of the absorption and luminescence spectra are presented for wide bandgap Ga1-xInxN/GaN quantum well systems. Whereas structures with narrow well widths exhibit the usual excitation-dependent bleaching of the exciton resonance without shifting spectral position, a significant blueshift of the exciton peak is obtained for wider quantum wells. This blueshift, which is also present in the excitation-dependent luminescence spectra, is attributed to the interplay between the screening of a strain induced piezoelectric field and the density dependence of many-body Coulomb effects. The calculations also show an over two orders of magnitude increase in the spontaneous electron-hole-pair lifetime with well width, due to the reduction of the electron-hole wave function overlap in the wider wells. The resulting decrease in spontaneous emission loss is predicted to lead to improved threshold properties in wide quantum well lasers. © 1999 The American Physical Society.

More Details

Coarsening of the Sn-Pb solder microstructure in constitutive model-based predictions of solder joint thermal mechanical fatigue

Journal of Electronic Materials

Vianco, Paul T.

An expression for the coarsening rate of the Pb-rich phase particles was determined through isothermal aging experiments and comparative literature data as: λ = λo+{[4.10×10-5 e-11023/T+15.6×10-8 e-3123/T (dγ/dt)]t}0.256 where γo and γ are the initial and final mean Pb-rich particle diameters, respectively (mm); T is temperature (°K); t is time (s); and dγ/dt is the strain rate (s-1). The phase coarsening behavior showed good agreement with previous literature data from isothermal aging experiments. The power-law exponent, p, for the Pb-rich phase size coarsening kinetics: γp-γop≈t increased from a value of 3.3 at the low aging temperature regime (70-100 °C) to a value of 5.1 at the high temperature regime (135-170 °C), suggesting that the number of short-circuit diffusion paths had increased with further aging. This expression provides an important basis for the microstructurally-based, constitutive equation used in the visco-plastic model for TMF in Sn-Pb solder. The revised visco-plastic model was exercised using a through-hole solder joint configuration. Initial data indicate a satisfactory compatibility between the coarsening expression and the constitutive equations.

More Details

Maleimide functionalized siloxane resins

Materials Research Society Symposium - Proceedings

Shaltout, R.M.

In-situ filling through hydrolysis and condensation of silicon alkoxides dissolved into polymers has been utilized to generate nanocomposites in which the filler phase can be intimately associated with the polymer on relatively small length scales. One problem of the method has been achieving useful fill volumes without bulk phase separation of the growing inorganic component from the polymer. In this paper, we describe the preparation of a new class of nanocomposite materials in which the inorganic filler phase is pre-assembled before copolymerization with an organic monomer. Maleimide monomers, prepared from alkoxysilylpropyl amines and maleic anhydride, were protected against side reactions by forming the oxonorbornene Diels-Alder adduct with furan. The monomers were then reacted under sol-gel conditions to form oligomers or polymers making up the filler phase. The material was activated by thermal deprotection of the maleimide and reacted with organic monomers or polymers to form the filled nanocomposite.

More Details

High-Accuracy Finite Difference Equations for Simulation of Photonic Structures

Optics InfoBase Conference Papers

Hadley, G.R.

Progress towards the development of such algorithms as been reported for waveguide analysis'-3and vertical-cavity laser simulation. In all these cases, the higher accuracy order was obtained for a single spatial dimension. More recently, this concept was extended to differencing of the Helmholtz Equation on a 2-D grid, with uniform regions treated to 4th order and dielectric interfaces to 3'd order5. No attempt was made to treat corners properly. In this talk I will describe the extension of this concept to allow differencing of the Helmholtz Equation on a 2-D grid to 6* order in uniform regions and 5* order at dielectric interfaces. In addition, the first known derivation of a finite difference equation for a dielectric comer that allows correct satisfaction of all boundary conditions will be presented. This equation is only accurate to first order, but as will be shown, results in simulations that are third-order-accurate. In contrast to a previous approach3 that utilized a generalized Douglas scheme to increase the accuracy order of the difference second derivative, the present method invokes the Helmholtz Equation itself to convert derivatives of high order in a single direction into mixed

More Details

Massively parallel computing: A Sandia perspective

Parallel Computing

Womble, David E.

The computing power available to scientists and engineers has increased dramatically in the past decade, due in part to progress in making massively parallel computing practical and available. The expectation for these machines has been great. The reality is that progress has been slower than expected. Nevertheless, massively parallel computing is beginning to realize its potential for enabling significant breakthroughs in science and engineering. This paper provides a perspective on the state of the field, colored by the authors' experiences using large-scale parallel machines at Sandia National Laboratories. We address trends in hardware, system software and algorithms, and we also offer our view of the forces shaping the parallel computing industry.

More Details

Permeability upscaling measured on a block of Berea Sandstone: Results and interpretation

Mathematical Geology

Tidwell, Vincent C.

To physically investigate permeability upscaling, over 13,000 permeability values were measured with four different sample supports (i.e., sample volumes) on a block of Berea Sandstone. At each sample support, spatially exhaustive permeability datasets were measured, subject to consistent flow geometry and boundary conditions, with a specially adapted minipermeameter test system. Here, we present and analyze a subset of the data consisting of 2304 permeability values collected from a single block face oriented normal to stratification. Results reveal a number of distinct and consistent trends (i.e., upscaling) relating changes in key summary statistics to an increasing sample support. Examples include the sample mean and semivariogram range that increase with increasing sample support and the sample variance that decreases. To help interpret the measured mean upscaling, we compared it to theoretical models that are only available for somewhat different flow geometries. The comparison suggests that the nonuniform flow imposed by the minipermeameter coupled with permeability anisotropy at the scale of the local support (i.e., smallest sample support for which data is available) are the primary controls on the measured upscaling. This work demonstrates, experimentally, that it is not always appropriate to treat the local-support permeability as an intrinsic feature of the porous medium, that is, independent of its conditions of measurement.

More Details

GaN CVD Reactions: Hydrogen and ammonia decomposition and the desorption of Gallium

MRS Internet Journal of Nitride Semiconductor Research

Bartram, Michael E.

Isotopic labeling experiments have revealed correlations between hydrogen reactions, Ga desorption, and ammonia decomposition in GaN CVD. Low energy electron diffraction (LEED) and temperature programmed desorption (TPD) were used to demonstrate that hydrogen atoms are available on the surface for reaction after exposing GaN(001) to deuterium at elevated temperatures. Hydrogen reactions also lowered the temperature for Ga desorption significantly. Ammonia did not decompose on the surface before hydrogen exposure. However, after hydrogen reactions altered the surface, N15H3 did undergo both reversible and irreversible decomposition. This also resulted in the desorption of N2 of mixed isotopes below the onset of GaN sublimation. This suggests that the driving force of the high nitrogen-nitrogen bond strength (226 kcal/mol) can lead to the removal of nitrogen from the substrate when the surface is nitrogen rich. Overall, these findings indicate that hydrogen can influence GaN CVD significantly, being a common factor in the reactivity of the surface, the desorption of Ga, and the decomposition of ammonia.

More Details

Low temperature electrical performance characteristics of Li-ion cells

SAE Technical Papers

Nagasubramanian, Ganesan

Advanced rechargeable lithium-ion batteries are presently being developed and commercialized worldwide for use in consumer electronics, military and space applications. The motivation behind these efforts involves, among other things, a favorable combination of energy and power density. For some of the applications the power sources may need to perform at a reasonable rate at subambient temperatures. Given the nature of the lithium-ion cell chemistry the low temperature performance of the cells may not be very good. At Sandia National Laboratories, we have used different electrochemical techniques such as impedance and charge/discharge at ambient and subambient temperatures to probe the various electrochemical processes that are occurring in Li-ion cells. The purpose of this study is to identify the component that reduces the cell performance at subambient temperatures. We carried out 3-electrode impedance measurements on the cells which allowed us to measure the anode and cathode impedances separately. Our impedance data suggests that while the variation in the electrolyte resistance between room temperature and -20°C is negligible, the cathode electrolyte interfacial resistance increases substantially in the same temperature span. We believe that the slow interfacial charge transfer kinetics at the cathode electrolyte may be responsible for the increase in cell impedance and poor cell performance. © Copyright 1999 Society of Automotive Engineers, Inc.

More Details

Use of COTS microelectronics in radiation environments

IEEE Transactions on Nuclear Science

Winokur, Peter S.

This paper addresses key issues for the cost-effective use of COTS (Commercially available Off The Shelf) microelectronics in radiation environments that enable circuit or system designers to manage risks and ensure mission success. We review several factors and tradeoffs affecting the successful application of COTS parts including (1) hardness assurance and qualification issues, (2) system hardening techniques, and (3) life-cycle costs. The paper also describes several experimental studies that address trends in total-dose, transient, and single-event radiation hardness as COTS technology scales to smaller feature sizes. As an example, the level at which dose-rate upset occurs in Samsung SRAMs increases from 1.4x10s rad(Si)/s for a 256K SRAM to 7.7xl09rad(Si)/s for a 4M SRAM, indicating unintentional hardening improvements in the design or process of a commercial technology. Additional experiments were performed to quantify variations in radiation hardness for COTS parts. In one study, only small (10-15%) variations were found in the dose-rate upset and latchup thresholds for Samsung 4M SRAMs from three different date codes. In another study, irradiations of 4M SRAMs from Samsung, Hitachi, and Toshiba indicate large differences in total-dose radiation hardness. The paper attempts to carefully define terms and clear up misunderstandings about the definitions of "COTS'1 and "radiation-hardened (RH)" technology. © 1999 IEEE.

More Details

Oxygen-induced restructuring of rutile TiO2(100): Formation mechanism, atomic models, and influence on surface chemistry

Faraday Discussions

Jennison, Dwight R.

The rutile TiO2(110) (1 × 1) surface is considered the prototypical 'well-defined' system in the surface science of metal oxides. Its popularity results partly from two experimental advantages: (i) bulk-reduced single crystals do not exhibit charging, and (ii) stoichiometric surfaces, as judged by electron spectroscopies, can be prepared reproducibly by sputtering and annealing in oxygen. We present results that show that this commonly applied preparation procedure may result in a surface structure that is by far more complex than generally anticipated. Flat, (1 × 1)-terminated surfaces are obtained by sputtering and annealing in ultrahigh vacuum. When re-annealed in oxygen at moderate temperatures (470-660 K), irregular networks of partially connected, pseudohexagonal rosettes (6.5 × 6 Å wide), one-unit cell wide strands, and small (≈tens of Å) (1 × 1) islands appear. This new surface phase is formed through reaction of oxygen gas with interstitial Ti from the reduced bulk. Because it consists of an incomplete, kinetically limited (1 × 1) layer, this phenomenon has been termed 'restructuring'. We report a combined experimental and theoretical study that systematically explores this restructuring process. The influence of several parameters (annealing time, temperature, pressure, sample history, gas) on the surface morphology is investigated using STM. The surface coverage of the added phase as well as the kinetics of the restructuring process are quantified by LEIS and SSIMS measurements in combination with annealing in 18O-enriched gas. Atomic models of the essential structural elements are presented and are shown to be stable with first-principles density functional calculations. The effect of oxygen-induced restructuring on surface chemistry and its importance for TiO2 and other bulk-reduced oxide materials is briefly discussed.

More Details

Fabrication of high performance microlenses for an integrated capillary channel electrochromatograph with fluorescence detection

Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures

Wendt, Joel R.

We describe the microfabrication of an extremely compact optical system as a key element in an integrated capillary channel electrochromatograph with fluorescence detection. The optical system consists of a vertical cavity surface-emitting laser (VCSEL), two high performance microlenses, and a commercial photodetector. The microlenses are multilevel diffractive optics patterned by electron beam lithography and etched by reactive ion etching in fused silica. The design uses substrate-mode propagation within the fused silica substrate. Two generations of optical subsystems are described. The first generation design has a 6 mm optical length and is integrated directly onto the capillary channel-containing substrate. The second generation design separates the optical system onto its own substrate module and the optical path length is further compressed to 3.5 mm. The first generation design has been tested using direct fluorescence detection with a 750 nm VCSEL pumping a 10-4 M solution of CY-7 dye. The observed signal-to-noise ratio of better than 100:1 demonstrates that the background signal from scattered pump light is low despite the compact size of the optical system and is adequate for system sensitivity requirements. © 1999 American Vacuum Society.

More Details

Extraction of substructural flexibility from global frequencies and mode shapes

AIAA journal

Alvin, Kenneth F.

A computational procedure for extracting substructure-by-substructure flexibility properties from global modal parameters is presented. The present procedure consists of two key features: an element-based direct flexibility method, which uniquely determines the global flexibility without resorting to case-dependent redundancy selections, and the projection of kinematically inadmissible modes that are contained in the iterated substructural matrices. The direct flexibility method is used as the basis of an inverse problem, whose goal is to determine substructural flexibilities given the global flexibility, geometrically determined substructural rigid-body modes, and the local-to-global assembly operators. The resulting procedure, given accurate global flexibility, extracts the exact element-by-element substructural flexibilities for determinate structures. For indeterminate structures, the accuracy depends on the iteration tolerance limits. The procedure is illustrated using both simple and complex numerical examples and appears to be effective for structural applications such as damage localization and finite element model reconciliation.

More Details

Capillary waves at liquid-vapor interfaces: A molecular dynamics simulation

Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics

Grest, Gary S.

Evidence for capillary waves at a liquid-vapor interface are presented from extensive molecular dynamics simulations of a system containing up to 1.24 million Lennard-Jones particles. Careful measurements show that the total interfacial width depends logarithmically on L∥, the length of the simulation cell parallel to the interface, as predicted theoretically. The strength of the divergence of the interfacial width on L∥ depends inversely on the surface tension γ. This allows us to measure γ two ways since γ can also be obtained from the difference in the pressure parallel and perpendicular to the interface. These two independent measures of γ agree provided that the interfacial order parameter profile is fit to an error function and not a hyperbolic tangent, as often assumed. We explore why these two common fitting functions give different results for γ.

More Details

Coupled resonator vertical cavity laser diodes

LEOS Summer Topical Meeting

Choquette, Kent D.

Previous photopumping studies of coupled vertical cavity laser structures have demonstrated three mode coupling (two photonic and one excitonic), dual wavelength emission, and short pulse generation. This paper reports on electrically injected coupled resonator vertical-cavity laser diodes, including two novel modulation approaches.

More Details

A new bound for the ratio between the 2-matching problem and its linear programming relaxation

Mathematical Programming, Series B

Carr, Robert D.

Consider the 2-matching problem defined on the complete graph, with edge costs which satisfy the triangle inequality. We prove that the value of a minimum cost 2-matching is bounded above by 4/3 times the value of its linear programming relaxation, the fractional 2-matching problem. This lends credibility to a long-standing conjecture that the optimal value for the traveling salesman problem is bounded above by 4/3 times the value of its linear programming relaxation, the subtour elimination problem. © Springer-Verlag 1999.

More Details

Etching effects during the chemical vapor deposition of (100) diamond

Journal of Chemical Physics

Battaile, Corbett C.

Diamond films were grown by chemical deposition of hydrocarbon species in a vapor composed predominantly of hydrogen. The rate constants of the surface reactions and the concentrations of the gas-phase species were used as input to a variable time step Monte Carlo algorithm, which simulates the evolution of the diamond growth surface by tracking the occupancies of surface sites. The results of the combined tight binding and density functional theory quantum mechanical calculations are presented, suggesting that the etching of isolated, monomolecular moieties occurred at an appreciable rate, while etching from larger carbon islands was nor favorable.

More Details

Magnetoresistance of one-dimensional subbands in tunnel-coupled double quantum wires

Physical Review B - Condensed Matter and Materials Physics

Moon, J.S.

We study the low-temperature in-plane magnetoresistance of tunnel-coupled quasi-one-dimensional quantum wires. The wires are defined by two pairs of mutually aligned split gates on opposite sides of a ⩽1-μm-thick (Formula presented) double-quantum-well heterostructure, allowing independent control of the width of each quantum well. In the ballistic regime, when both wires are defined and the field is perpendicular to the current, a large resistance peak at ∼6 T is observed with a strong gate voltage dependence. The data are consistent with a counting model whereby the number of subbands crossing the Fermi level changes with field due to the formation of an anticrossing in each pair of one-dimensional subbands. © 1999 The American Physical Society.

More Details

Very low-power consumption analog pulse processing ASIC for semiconductor radiation detectors

IEEE Nuclear Science Symposium and Medical Imaging Conference

Wessendorf, Kurt O.

We describe a very-low power consumption circuit for processing the pulses from a semiconductor radiation detector. The circuit was designed for use with a cadmium zinc telluride (CZT) detector for unattended monitoring of stored nuclear materials. The device is intended to be battery powered and operate at low duty-cycles over a long period of time. This system will provide adequate performance for medium resolution gamma-ray pulse-height spectroscopy applications. The circuit incorporates the functions of a charge sensitive preamplifier, shaping amplifier, and peak sample and hold circuit. An application specific integrated circuit (ASIC) version of the design has been designed, built and tested. With the exception of the input field effect transistor (FET), the circuit is constructed using bipolar components. In this paper the design philosophy and measured performance characteristics of the circuit are described.

More Details

Stability of Tl-Ba-Ca-Cu-O superconducting thin films

Journal of Materials Research

Siegal, Michael P.

We report the stability of TlBa2CaCu2O7 and Tl2Ba2CaCu2O8 on LaAlO3(100) epitaxial thin films, under a variety of conditions. All films are stable in acetone and methanol and with repeated thermal cycling to cryogenic temperatures. Moisture, especially vapor, degrades film quality rapidly. These materials are stable to high temperatures in either N2 or O2 ambients. While total degradation, resulting from Tl depletion, occurs at the same temperatures for both phases, 600 °C in N2 and 700 °C in O2, the onset of degradation occurs at somewhat lower temperatures for TlBa2CaCu2O7 than for Tl2Ba2CaCu2O8.

More Details

Tailored porous materials

Chemistry of Materials

Loy, Douglas A.

Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

More Details

A new approach to nuclear microscopy: The ion-electron emission microscope

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Vizkelethy, Gyorgy

A new multidimensional high lateral resolution ion beam analysis technique, ion-electron emission microscopy (IEEM) is described. Using MeV energy ions, IEEM is shown to be capable of ion beam induced charge collection (IBICC) measurements in semiconductors. IEEM should also be capable of microscopically and multidimensionally mapping the surface and bulk composition of solids. As such, IEEM has nearly identical capabilities as traditional nuclear microprobe analysis, with the advantage that the ion beam does not have to be focused. The technique is based on determining the position where an individual ion enters the surface of the sample by projection secondary electron emission microscopy. The x-y origination point of a secondary electron, and hence the impact coordinates of the corresponding incident ion, is recorded with a position sensitive detector connected to a standard photoemission electron microscope (PEEM). These signals are then used to establish coincidence with IBICC, atomic, or nuclear reaction induced ion beam analysis signals simultaneously caused by the incident ion. © 1999 Elsevier Science B.V. All rights reserved.

More Details

Shock Hugoniot and release in concrete with different aggregate sizes from 3 to 23 GPa

International Journal of Impact Engineering

Hall, Clint A.

A series of controlled impact experiments has been performed to determine the shock loading and release behavior of two types of concrete, differentiated by aggregate size, but with average densities varying by less than 2 percent. Hugoniot stress and subsequent release data was collected over a range of approximately 3 to 25 GPa using a plate reverberation technique in combination with velocity interferometry. The results of the current data are compared to those obtained in previous studies on concrete with a different aggregate size but similar density. Results indicate that the average loading and release behavior are comparable for the three types of concrete discussed in this paper. Residual strain is also indicated from these measurements. © 1999 Elsevier Science Ltd. All rights reserved.

More Details

Rolling thunder - integration of the SOLO 161 Stirling engine with the CPG -460 solar concentrator at Ft. Huachuca

Journal De Physique. IV : JP

Moss, Timothy A.

Project 'Rolling Thunder' is a dish/Stirling demonstration project at Ft. Huachuca in southeastern Arizona. As part of the project, Sandia decided to retrofit a SOLO 161 Stirling engine on the CPG-460 at Ft. Huachuca. Although the SOLO 161 PCU has operated nearly flawlessly and the CPG-460 has been, for the most part, a solid and reliable component, integration of the SOLO PCU with the CPG-460 into a functional system required significant attention.

More Details

Fast resistive bolometry

Review of Scientific Instruments

Spielman, Rick

Resistive bolometry is an accurate, robust, spectrally broadband technique for measuring absolute x-ray fluence and flux. Bolometry is an independent technique for x-ray measurements that is based on a different set of physical properties than other diagnostics such as x-ray diodes, photoconducting detectors, and P-I-N diodes. Bolometers use the temperature-driven change in element resistivity to determine the total deposited energy. The calibration of such a device is based on fundamental material properties and its physical dimensions. We describe the use of nickel and gold bolometers to measure x rays generated by high-power z pinches on Sandia's Saturn and Z accelerators. The Sandia bolometer design described herein has a pulse response of ∼1 ns. We describe in detail the fabrication, fielding, and data analysis issues leading to highly accurate x-ray measurements. The fundamental accuracy of resistive bolometry will be discussed. © 1999 American Institute of Physics.

More Details

Fielding of the on-axis diagnostic package at Z

Review of Scientific Instruments

Hurst, Michael J.

We have developed a comprehensive diagnostic package for observing z-pinch radiation along the pinch axis on the Z accelerator. The instrumentation, fielded on the axial package, are x-ray diagnostics requiring direct lines of sight to the target. The diagnostics require vacuum access to the center of the accelerator. The environment is a hostile one, where we must deal with an intense, energetic photon flux (>100 keV) debris (e.g., bullets or shrapnel), and mechanical shock in order for the diagnostics to survive. In addition, practical constraints require the package be refurbished and utilized on a once a day shot schedule. In spite of this harsh environment, we have successfully fielded the diagnostic package with a high survivability of the data and the instruments. In this article, we describe the environment and issues related to the reentrant diagnostic package's implementation and maintenance. © 1999 American Institute of Physics.

More Details

Correlation of intermediate ion energy induced extended defect continuity to enhanced pinning potential in TL-2212 films

Materials Research Society Symposium - Proceedings

Newcomer, P.P.; Venturini, E.L.; Doyle, B.L.; Brice, D.K.; Schoene, H.

Lattice defects are introduced into the structure to suppress the motion of magnetic vortices and enhance the critical current density in high temperature superconductors. Point defects are not very effective pinning sites for the cuprate superconductors; however, extended defects, such as linear tracks, have been shown to be strong pinning sites. We study the superconducting cuprate Tl-2212 (the numbers designate Tl-Ba-Ca-Cu stoichiometry). Large enhancements of vortex pinning potential were observed in Tl-2212 after high-intermediate energy heavy-ion irradiations where non-continuous extended defects were induced at dE/dx of 9 to 15.2 keV/nm (60 MeV Au, 60 MeV Cu, and 30 MeV Au) and continuous linear defects were induced at 19.5 keV/nm (88 MeV Au). Our research addresses the question of pinning in highly anisotropic materials like Tl-2212 where the vortices are `pancakes' rather than `rods' and suitable defect structures may be discontinuous extended damage domains. The defect microstructure and the effectiveness of the pinning potential in Tl-2212 after irradiation by intermediate energy Au at lower dE/dx of 5-15 keV/nm, where recoils are more significant, is studied using high resolution transmission electron microscopy digital imaging and a SQUID magnetometer. The nature of the ion irradiation damage at these intermediate dE/dx will be correlated to the average vortex pinning potential and the TRIMRC calculations for recoils.

More Details

Sol-gel chemistry by ring-opening polymerization

Materials Research Society Symposium - Proceedings

Rahimian, Kamyar R.; Loy, Douglas A.

Sol-gel processing of materials is plagued by shrinkage during polymerization of the alkoxide monomers and processing (aging and drying) of the resulting gels. We have developed a new class of hybrid organic-inorganic materials based on the solventless ring-opening polymerization (ROP) of monomers bearing the 2,2,5,5-tetramethyl-2,5-disilaoxacyclopentyl group, which permits us to drastically reduce shrinkage in sol-gel processed materials. Because the monomers are polymerized through a chain growth mechanism catalyzed by base rather than the step growth mechanism normally used in sol-gel systems, hydrolysis and condensation products are entirely eliminated. Furthermore, since water is not required for hydrolysis, an alcohol solvent is not necessary. Monomers with two disilaoxacyclopentyl groups, separated by a rigid phenylene group or a more flexible alkylene group, were prepared through disilylation of the corresponding diacetylenes, followed by ring closure and hydrogenation. Anionic polymerization of these materials, either neat or with 2,2,5,5-tetramethyl-2,5-disila-1-oxacyclopentane as a copolymer, affords thermally stable transparent gels with no visible shrinkage. These materials provide an easy route to the introduction of sol-gel type materials in encapsulation of microelectronics, which we have successfully demonstrated.

More Details

Thermally stimulated current in SiO2

Microelectronics Reliability

Fleetwood, Daniel M.

Thermally stimulated current (TSC) techniques provide information about oxide-trap charge densities and energy distributions in MOS (metal-oxide-semiconductor) capacitors exposed to ionizing radiation or high-field stress that is difficult or impossible to obtain via standard capacitance-voltage or current-voltage techniques. The precision and reproducibility of measurements through repeated irradiation/TSC cycles on a single capacitor is demonstrated with a radiation-hardened oxide, and small sample-to-sample variations are observed. A small increase in E′δ center density may occur in some non-radiation-hardened oxides during repeated irradiation/TSC measurement cycles. The importance of choosing an appropriate bias to obtain accurate measurements of trapped charge densities and energy distributions is emphasized. A 10 nm deposited oxide with no subsequent annealing above 400 °C shows a different trapped-hole energy distribution than thermally grown oxides, but a similar distribution to thermal oxides is found for deposited oxides annealed at higher temperatures. Charge neutralization during switched-bias irradiation is found to occur both because of hole-electron annihilation and increased electron trapping in the near-interfacial SiO2. Limitations in applying TSC to oxides thinner than approximately 5 nm are discussed.

More Details

Monitoring and controlling of strain during MOCVD of AlGaN for UV optoelectronics

MRS Internet Journal of Nitride Semiconductor Research

Han, J.

The grown-in tensile strain, due to a lattice mismatch between AlGaN and GaN, is responsible for the observed cracking that seriously limits the feasibility of nitride-based ultraviolet (UV) emitters. We report in-situ monitoring of strain/stress during MOCVD of AlGaN based on a wafer-curvature measurement technique. The strain/stress measurement confirms the presence of tensile strain during growth of AlGaN pseudomorphically on a thick GaN layer. Further growth leads to the onset of stress relief through crack generation. We find that the growth of AlGaN directly on low-temperature (LT) GaN or AlN buffer layers results in a reduced and possibly controllable strain.

More Details

Photoelectrochemical etching of inxGa1-xN

MRS Internet Journal of Nitride Semiconductor Research

Shul, Randy J.

A comparison of KOH, NaOH and AZ400K solutions for UV photo-assisted etching of undoped and n+ GaN is discussed. The etching is diffusion-limited (Ea < 6kCal·mol-1) under all conditions and is significantly faster with bias applied to the sample during light exposure. No etching of InN was observed, due to the very high n-type background doping (> 1020cm-3) in the material.

More Details

Bundle binding in polyelectrolyte solutions

Physical Review Letters

Stevens, Mark J.

Stiff polyelectrolytes are found to spontaneously form oriented bundles. Conditions under which bundling occurs are found. Molecular dynamics simulations show that divalent counterions are necessary, and the chains must be sufficiently long and stiff. No aggregation occurs for monovalent counterions. For flexible or short chains, aggregation occurs but bundle formation does not. Because of dynamical constraints, the systems tend to order into a network of connected bundles, not a single bundle. © 1999 The American Physical Society.

More Details

Modeling and simulation-the effects of grain coarsening on local stresses and strains in solder microstructure

Proceedings - International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces

Chanchani, Rajen

A critical issue in the long-term reliability of solder connections used in electronic packages is joint failure during thermal cycling. At present, solder is assumed to be a homogeneous single-phase metal in most finite element analyses to predict solder joint fatigue failures. However, in the last decade, several metallurgical studies have shown that solder microstructure may have a role in early solder joint failures. Investigators have observed that solder microstructure coarsens in local bands during aging and during thermal cycle fatigue. In a failed solder joint, the fatigue cracks are found in these bands of coarse grains. It is speculated that the grain coarsening increases local strains within the microstructure, thereby increasing the likelihood for a crack to initiate. The objective of this study is to model and simulate the effect of grain coarsening on local stresses and strains. During solidification of eutectic Pb/Sn solder, two types of microstructures form: lamellar and equiaxed. In this study, the author has developed a computer code to generate both types of microstructures of varying grain coarseness. This code is incorporated into the finite element code that analyzes the local stresses and strains within the computer-generated microstructure. The FE code, specifically developed for this study, uses an algorithm involving the sparse matrix and iterative solver. This code on a typical single-processor machine will allow the analyst to use over 1 million degrees of freedom.

More Details

Minimum surface formation energy for three-dimensional intergranular fracture

Materials Research Society Symposium - Proceedings

Holm, Elizabeth A.

The minimum expended energy for fracture is the free energy required to form two new surfaces. For intergranular fracture, the minimum surface formation energy is complicated by the rough fracture surface, with area greater than the specimen cross-section. We utilize network optimization algorithms (max-flow/min-cut) to determine the minimum surface formation energies and surfaces for intergranular fracture in 3D polycrystals. For equiaxed grains and uniform boundary strength, the minimum energy fracture area is independent of grain size and is 45% larger than the specimen cross-section, and intergranular fracture will occur when surface energy is less than 1.6 times the grain boundary energy. The 3D fracture area is larger than projected from 2D systems. In systems with microcracked boundaries, the fracture surface deviates to preferentially include microcracked boundaries, creating interlocking grain configurations. Two-dimensional percolation of microcracks occurs at about 80% microcracked boundaries.

More Details

DEVELOPMENT OF A LATCHING VALVE FOR MICRO-CHEM-LAB™

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Wong, C.C.; Adkins, Douglas R.; Manginell, Ronald P.; Frye-Mason, Gregory C.; Hesketh, Peter J.; Stanczyk, Thomas

An integrated microsystem to detect traces of chemical agents (pChemLab™) is being developed at Sandia for counter-terrorism and nonproliferation applications. This microsystem has two modes of operation: liquid and gas phase detection. For the gas phase detection. we are integrating these critical components: a preconcentrator for sample collection, a gas chromatographic (GC) separator, a chemically selective flexural plate wave (FPW) anay mass detector, and a latching valve onto a single chip. By fabricating these components onto a single integrated system (pChemLab™on a chip), the advantages of reduced dead volume, lower power consumption, and smaller physical size can be realized. In this paper, the development of a latching valve will be presented. The key design parameters for this latching valve are: a volumetric flow rate of 1 mL/min, a maximum hold-off pressure of 40 kPa (6 psi), a relatively low power, and a fast response time. These requirements have led to the design of a magnetically actuated latching relay diaphragm valve. Magnetic actuation is chosen because it can achieve sufficient force to effectively seal against back pressure and its power consumption is relatively low. The actuation time is rapid, and valve can latch in either an open or closed state. A corrugated parylene membrane is used to separate the working fluid from internal components of the valve. Corrugations in the parylene ensure that the diaphragm presents minimum resistance to the actuator for a relativley large deflection. Two different designs and their performance of the magnetic actuation have been evaluated. The first uses a linear magnetic drive mechanism, and the second uses a relay mechanism. Preliminary results of the valve performance indicates that the required driving voltage is about 10 volts, the measured flow rate is about 50 mL/min, and it can hold off pressure of about 5 psi (34 kPa). Latest modifications of the design show excellent performance improvements.

More Details

Approximation algorithms for the fixed-topology phylogenetic number problem

Algorithmica (New York)

Phillips, Cynthia A.

In the ℓ-phylogeny problem, one wishes to construct an evolutionary tree for a set of species represented by characters, in which each state of each character induces no more than ℓ connected components. We consider the fixed-topology version of this problem for fixed-topologies of arbitrary degree. This version of the problem is known to be NP-comPlete for ℓ ≥ 3 even for degree-3 trees in which no state labels more than ℓ+ 1 leaves (and therefore there is a trivial ℓ + 1 phytogeny). We give a 2-approximation algorithm for all ℓ ≥ 3 for arbitrary input topologies and we give an optimal approximation algorithm that constructs a 4-phylogeny when a 3-phylogeny exists. Dynamic programming techniques, which are typically used in fixed-topology problems, cannot be applied to ℓ-phylogeny problems. Our 2-approximation algorithm is the first application of linear programming to approximation algorithms for phylogeny problems. We extend our results to a related problem in which characters are polymorphic.

More Details

Test profiles for stationary energy-storage applications

Journal of Power Sources

Butler, Paul C.

Evaluation of battery and other energy-storage technologies for stationary uses is progressing rapidly toward application-specific testing. This testing uses computer-based data acquisition and control equipment, active electronic loads and power supplies, and customized software, to enable sophisticated test regimes which simulate actual use conditions. These simulated-use tests provide more accurate performance and life evaluations than simple constant resistance or current testing regimes. Several organizations are cooperating to develop simulated-use tests for utility-scale storage systems, especially battery energy-storage systems (BESSs). Some of the tests use stepped constant-power charge and discharge regimes to simulate conditions created by electric utility applications such as frequency regulation (FR) and spinning reserve (SR). Other test profiles under development simulate conditions for the energy-storage component of remote-area power supplies (RAPSs) which include renewable and/or fossil-fuelled generators. Various RAPS applications have unique sets of service conditions that require specialized test profiles. Almost all RAPS tests and many tests that represent other stationary applications need, however, to simulate significant time periods that storage devices operate at low-to-medium states-of-charge without full recharge. Consideration of these and similar issues in simulated-use test regimes is necessary to predict effectively the responses of the various types of batteries in specific stationary applications. This paper describes existing and evolving stationary applications for energy-storage technologies and test regimes which are designed to simulate them. The paper also discusses efforts to develop international testing standards.

More Details

Solar thermal electricity in 1998: an IEA/solarPACES summary of status and future prospects

Journal De Physique. IV : JP

Kolb, Gregory J.

SolarPACES (Solar Power and Chemical Energy Systems) is the International Energy Agency's solar thermal working group. To date, research and development activities sponsored by the group have helped reduce the cost of solar thermal systems to one-fifth that of the early pilot plants. This report presents the collective position of the SolarPACES community on solar thermal electricity-generating technology. Topics discussed include the current status of the technology and likely near-term improvements, the needs of target markets, and important technical and financial issues that must be resolved for success in near-term global markets.

More Details

Uniaxial Compression Experiments on PZT 95/5-2Nb Ceramic: Evidence for an Orientation-Dependent, ''Maximum Compressive Stress'' Criterion for Onset of the F(R1)()A(O) Polymorphic Phase Transformation

Zeuch, David H.

Some time ago we presented evidence that, under nonhydrostatic loading, the F{sub R1} {r_arrow} A{sub O} polymorphic phase transformation in unpoled PZT 95/5-2Nb ceramic began when the maximum compressive stress equaled the hydrostatic pressure at which the transformation otherwise took place. More recently, we showed that this simple stress criterion did not apply to nonhydrostatically compressed, poled ceramic. However, unpoled ceramic is isotropic, whereas poled ceramic has a preferred crystallographic orientation and is mechanically anisotropic. If we further assume that the transformation depends not only on the magnitude of the compressive stress, but also its orientation relative to some feature(s) of PZT 95/5-2Nb's crystallography, then these disparate results can be qualitatively resolved. In this report, we first summarize the existing results for unpoled and poled ceramic. Using our orientation-dependent hypothesis and these results, we derive simple arithmetic expressions that accurately describe our previously-observed effects of nonhydrostatic stress on the transformation of unpoled ceramic. We then go on to test new predictions based on the orientation-dependent model. It has long been known that the transformation can be triggered in uniaxial compression: the model specifically requires a steadily increasing axial stress to drive the transformation of a randomly-oriented polycrystal to completion. We show that when the stress is held constant during uniaxial compression experiments, the transformation stops, supporting our hypothesis. We close with a discussion of implications of our model, and ways to test it using poled ceramic.

More Details

Parallel Finite Element Electron-Photon Transport Analysis on 2-D Unstructured Mesh

Drumm, Clifton R.

A computer code has been developed to solve the linear Boltzmann transport equation on an unstructured mesh of triangles, from a Pro/E model. An arbitriwy arrangement of distinct material regions is allowed. Energy dependence is handled by solving over an arbitrary number of discrete energy groups. Angular de- pendence is treated by Legendre-polynomial expansion of the particle cross sections and a discrete ordinates treatment of the particle fluence. The resulting linear system is solved in parallel with a preconditioned conjugate-gradients method. The solution method is unique, in that the space-angle dependence is solved si- multaneously, eliminating the need for the usual inner iterations. Electron cross sections are obtained from a Goudsrnit-Saunderson modifed version of the CEPXS code. A one-dimensional version of the code has also been develop@ for testing and development purposes.

More Details

Surface Micromachined Flexural Plate Wave Device Integrable on Silicon

Tuttle, Bruce

Small, reliable chemical sensors are needed for a wide range of applications, such as weapon state-of-health monitoring, nonproliferation activities, and manufacturing emission monitoring. Significant improvements in present surface acoustic wave sensors could be achieved by developing a flexural plate-wave (FPW) architecture, in which acoustic waves are excited in a thin sensor membrane. Further enhancement of device performance could be realized by integrating a piezoelectric thin film on top of the membrane. These new FPW-piezoelectric thin film devices would improve sensitivity, reduce size, enhance ruggedness and reduce the operating frequency so that the FPW devices would be compatible with standard digital microelectronics. Development of these piezoelectric thin film // FPW devices requires integration of (1) acoustic sensor technology, (2) silicon rnicromachining techniques to fabricate thin membranes, and (3) piezoelectric thin films. Two piezoelectric thin film technologies were emphasized in this study: Pb(Zr,Ti)O{sub 3} (PZT) and AlN. PZT thin films were of sufficient quality such that the first high frequency SAW measurements on PZT thin films were measured during the course of this study. Further, reasonable ferroelectric properties were obtained from PZT films deposited on Si surface micromachined FPW device membranes. Fundamental understanding of the effect of nanodimension interfacial layers on AlN thin film domain configurations and piezoelectric response was developed. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract DE-AC04-94AL85000.

More Details

Enhanced Vapor-Phase Diffusion in Porous Media - LDRD Final Report

Webb, Stephen W.

As part of the Laboratory-Directed Research and Development (LDRD) Program at Sandia National Laboratories, an investigation into the existence of enhanced vapor-phase diffusion (EVD) in porous media has been conducted. A thorough literature review was initially performed across multiple disciplines (soil science and engineering), and based on this review, the existence of EVD was found to be questionable. As a result, modeling and experiments were initiated to investigate the existence of EVD. In this LDRD, the first mechanistic model of EVD was developed which demonstrated the mechanisms responsible for EVD. The first direct measurements of EVD have also been conducted at multiple scales. Measurements have been made at the pore scale, in a two- dimensional network as represented by a fracture aperture, and in a porous medium. Significant enhancement of vapor-phase transport relative to Fickian diffusion was measured in all cases. The modeling and experimental results provide additional mechanisms for EVD beyond those presented by the generally accepted model of Philip and deVries (1957), which required a thermal gradient for EVD to exist. Modeling and experimental results show significant enhancement under isothermal conditions. Application of EVD to vapor transport in the near-surface vadose zone show a significant variation between no enhancement, the model of Philip and deVries, and the present results. Based on this information, the model of Philip and deVries may need to be modified, and additional studies are recommended.

More Details

A Family of Uniform Strain Tetrahedral Elements and a Method for Connecting Dissimilar Finite Element Meshes

Dohrmann, Clark R.

This report documents a collection of papers on a family of uniform strain tetrahedral finite elements and their connection to different element types. Also included in the report are two papers which address the general problem of connecting dissimilar meshes in two and three dimensions. Much of the work presented here was motivated by the development of the tetrahedral element described in the report "A Suitable Low-Order, Eight-Node Tetrahedral Finite Element For Solids," by S. W. Key {ital et al.}, SAND98-0756, March 1998. Two basic issues addressed by the papers are: (1) the performance of alternative tetrahedral elements with uniform strain and enhanced uniform strain formulations, and (2) the proper connection of tetrahedral and other element types when two meshes are "tied" together to represent a single continuous domain.

More Details

Relativistically Self-Channeled Femtosecond Terawatt Lasers for High-Field Physics and X-Ray Generation

Cameron, Stewart M.

Optical channeling or refractive guiding processes involving the nonlinear interaction of intense femtosecond optical pulses with matter in the self-focussing regime has created exciting opportunities for next-generation laser plasma-based x-ray sources and directed energy applications. This fundamentally new form of extended paraxial electromagnetic propagation in nonlinear dispersive media such as underdense plasma is attributed to the interplay between normal optical diffraction and intensity-dependent nonlinear focussing and refraction contributions in the dielectric response. Superposition of these mechanisms on the intrinsic index profile acts to confine the propagating energy in a dynamic self-guiding longitudinal waveguide structure which is stable for power transmission and robust compression. The laser-driven channels are hypothesized to support a degree of solitonic transport behavior, simultaneously stable in the space and time domains (group velocity dispersion balances self-phase modulation), and are believed to be self-compensating for diffraction and dispersion over many Rayleigh lengths in contrast with the defining characteristics of conventional diffractive imaging and beamforming. By combining concentrated power deposition with well-ordered spatial localization, this phenomena will also create new possibilities for production and regulation of physical interactions, including electron beams, enhanced material coupling, and self-modulated plasma wakefields, over extended gain distances with unprecedented energy densities. Harmonious combination of short-pulse x-ray production with plasma channeling resulting from a relativistic charge displacement nonlinearity mechanism in the terawatt regime (10{sup 18} W/cm{sup 2}) has been shown to generate high-field conditions conducive to efficient multi-kilovolt x-ray amplification and peak spectral brightness. Channeled optical propagation with intense short-pulse lasers is expected to impact several critical mission areas at Sandia including x-ray backlighting of pinch implosions, nondestructive radiographic imaging of aging weapons components, high-power electromagnetic pulse generation, particle acceleration, and remote sensing.

More Details

Final Report for the Scaled Asynchronous Transfer Mode (ATM) Encryption Laboratory Directed Research and Development Project

Pierson, Lyndon G.

This effort studied the integration of innovative methods of key management crypto synchronization, and key agility while scaling encryption speed. Viability of these methods for encryption of ATM cell payloads at the SONET OC- 192 data rate (10 Gb/s), and for operation at OC-48 rates (2.5 Gb/s) was shown. An SNL-Developed pipelined DES design was adapted for the encryption of ATM cells. A proof-of-principle prototype circuit board containing 11 Electronically Programmable Logic Devices (each holding the equivalent of 100,000 gates) was designed, built, and used to prototype a high speed encryptor.

More Details

Results of the Weeks Island Strategic Petroleum Reserve Oil Leak Risk Assessment Study

Molecke, Martin A.

This study evaluated multiple, long-term environmental oil-contamination risk scenarios that could result from the potential leakage of UP to 1.5 million barrels of crude oil entombed in the Weeks Island SPR mine following site decommissioning and abandonment, and up to 100 years thereafter. This risk assessment also provides continuity with similar risk evaluations performed earlier and documented in the 1995 DOE Environmental Assessment for Decommissioning the Strategic Petroleum Reserve Weeks Island Facility (EA). This current study was requested by the DOE to help them determine if their previous Finding of No Significant Impact (FONSI), in the EA, is still valid or needs to be rescinded. Based on the calculated environmental risk results (in terms of clean-up and remediation expenses) presented in this risk assessment, including the calculated average likelihoods of oil release and potential oil-leakage volumes, none of the evaluated risk events would appear to satisfy the definition of significant environmental impact in National Environmental Policy Act (NEPA) terminology. The DOE may combine these current results with their earlier evaluations and interpretations in the 1995 EA in order to assess whether the existing FONSI is still accurate, acceptable, and valid. However, from a risk evaluation standpoint, the assessment of impacts appears to be the same whether only 10,000 to 30,000 barrels of crude oil (as considered in the 1995 EA), or up to 1.5 million barrels of oil (as considered herein) are abandoned in the Weeks Island SPR facility.

More Details

MPSalsa Version 1.5: A Finite Element Computer Program for Reacting Flow Problems: Part 1 - Theoretical Development

Schmidt, Rodney C.

The theoretical background for the finite element computer program, MPSalsa Version 1.5, is presented in detail. MPSalsa is designed to solve laminar or turbulent low Mach number, two- or three-dimensional incompressible and variable density reacting fluid flows on massively parallel computers, using a Petrov-Galerkin finite element formulation. The code has the capability to solve coupled fluid flow (with auxiliary turbulence equations), heat transport, multicomponent species transport, and finite-rate chemical reactions, and to solve coupled multiple Poisson or advection-diffusion-reaction equations. The program employs the CHEMKIN library to provide a rigorous treatment of multicomponent ideal gas kinetics and transport. Chemical reactions occurring in the gas phase and on surfaces are treated by calls to CHEMKIN and SURFACE CHEMK3N, respectively. The code employs unstructured meshes, using the EXODUS II finite element database suite of programs for its input and output files. MPSalsa solves both transient and steady flows by using fully implicit time integration, an inexact Newton method and iterative solvers based on preconditioned Krylov methods as implemented in the Aztec. solver library.

More Details

Column Experiments for Radionuclide Adsorption Studies of the Culebra Dolomite: Retardation Parameter Estimation for Non-Eluted Actinide Species

Brown, G.O.; Lucero, D.A.; Perkins, W.G.

The U.S. Department of Energy (DOE) has been developing a nuclear waste disposal facility, the Waste Isolation Pilot Plant (WIPP), located approximately 42 km east of Carlsbad, New Mexico. The WIPP is designed to demonstrate the safe disposal of transuranic wastes produced by the defense nuclear-weapons program. Performance assessment analyses (U.S. DOE, 1996) indicate that human intrusion by inadvertent and intermittent drilling for resources provide the only credible mechanisms for significant releases of radionuclides horn the disposal system. These releases may occur by five mechanisms: (1) cuttings, (2) cavings, (3) spallings, (4) direct brine releases, and (5) long-term brine releases. The first four mechanisms could result in immediate release of contaminant to the accessible environment. For the last mechanism, migration pathways through the permeable layers of rock above the Salado are important, and major emphasis is placed on the Culebra Member of the Rustler Formation because this is the most transmissive geologic layer in the disposal system. For reasons of initial quantity, half-life, and specific radioactivity, certain isotopes of Th, U, Am, and Pu would dominate calculated releases from the WIPP. In order to help quanti~ parameters for the calculated releases, radionuclide transport experiments have been carried out using five intact-core columns obtained from the Culebra dolomite member of the Rustler Formation within the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. This report deals primarily with results of mathematical analyses related to the retardation of %J%, 24%, and 24'Am in two of these cores (B-Core - VPX26-11A and C-Core - VPX28-6C). All B-Core transport experiments were done using Culebra-simukmt brine relevant to the core recovery location (the WIPP air-intake shaft - AIS). Most experiments with C-Core were done with AIS brine with some admixture of a brine composition (ERDA-6) that simulated deeper formation brines. No significant changes in transport behavior were observed for changes in brine. Hydraulic characteristics (i.e., apparent porosity and apparent dispersion coefficient) for the cores were obtained via experiments using conservative tracer `Na. Elution experiments carried out over periods of a few days with tracers `*U and %Np indicated that these tracers were weakly retarded as indicated by delayed elution of these species. Elution experiments with tracers `%, 24'Pu, and 24'Ani were performed, but no elution of any of these species was observed in any flow experiment to date, including experiments of up to two years duration. However, B-Core was subjected to tomographic analysis from which a retardation factor can be inferred for%. Moreover, the fact of non- elution for 24*Pu and 24'Am after more than two years brine flow through C-Core can be coupled with the minimum detectable activity for each of these species to compute minimum retardation factors in C-Core. The retardation factors for all three species can then be coupled with the apparent hydraulic characteristics to estimate an apparent minimum solutionhock distribution coefficient, &, for each actinide. The specific radionuclide isotopes used in these experiments were chosen to facilitate analysis. Even though these isotopes are not necessarily the same as those that are most important to WIPP performance, they are isotopes of the same elements, and . their chemical and transport properties are therefore identical to those of isotopes in the WIPP inventory. The retardation factors and & values deduced from experimental results strongly support the contention that sorption in the Culebra provides an effective barrier to release of Th, Pu, and Am during the regulatory period.

More Details

LandScape Command Set: Local Area Network Distributed Supervisory Control and Programming Environment

Burchard, Ross L.

This paper presents the Local Area Network Distributed Supervisory Control and Programming Environment (LandScape) commands set that provides a Generic Device Subsystem Application Programmers Interface (API). These commands are implemented using the Common Object Request Broker Architecture (CORBA) specification with Orbix from Iona Technologies.

More Details

Advanced 3D Sensing and Visualization System for Unattended Monitoring

Carlson, Jeffrey

The purpose of this project was to create a reliable, 3D sensing and visualization system for unattended monitoring. The system provides benefits for several of Sandia's initiatives including nonproliferation, treaty verification, national security and critical infrastructure surety. The robust qualities of the system make it suitable for both interior and exterior monitoring applications. The 3D sensing system combines two existing sensor technologies in a new way to continuously maintain accurate 3D models of both static and dynamic components of monitored areas (e.g., portions of buildings, roads, and secured perimeters in addition to real-time estimates of the shape, location, and motion of humans and moving objects). A key strength of this system is the ability to monitor simultaneous activities on a continuous basis, such as several humans working independently within a controlled workspace, while also detecting unauthorized entry into the workspace. Data from the sensing system is used to identi~ activities or conditions that can signi~ potential surety (safety, security, and reliability) threats. The system could alert a security operator of potential threats or could be used to cue other detection, inspection or warning systems. An interactive, Web-based, 3D visualization capability was also developed using the Virtual Reality Modeling Language (VRML). The intex%ace allows remote, interactive inspection of a monitored area (via the Internet or Satellite Links) using a 3D computer model of the area that is rendered from actual sensor data.

More Details

Managing Nicaraguan Water Resources Definition and Relative Importance of Information Needs

Engi, Dennis

This report provides an overview of the results of the Vital the Nicaraguan Water Resources Management Initiative, Issues process as implemented for a collaborative effort between the Nicaraguan Ministry of Environment and Natural Resources and Sandia National Laboratories. This initiative is being developed to assist in the development of an efficient and sustainable water resources management system for Nicamgua. The Vital Issues process was used to provide information for developing a project that will develop and implement an advanced information system for managing Nicaragua's water resources. Three Vital Issues panel meetings were convened to 1) develop a mission statement and evaluation criteria for identifying and ranking the issues vital to water resources management in Nicaragua 2) define and rank the vital issues; and 3) identify a preliminary list of information needed to address the vital issues. The selection of panelists from the four basic institutional perspectives- government, industiy, academe, and citizens' groups (through nongovernmental organizations (NGOs))-ensured a high level of stakeholder representation on the panels. The already existing need for a water resource management information system has been magnified in the aftemnath of Hurricane Mitch. This information system would be beneficial for an early warning system in emergencies, and the modeling and simulation capabilities of the system would allow for advanced planning. Additionally, the outreach program will provide education to help Nicaraguan improve their water hygiene practices.

More Details

Technique for Measuring Hybrid Electronic Component Reliability

Schwartz, Cynthia L.

Materials compatibility studies of aged, engineered materials and hardware are critical to understanding and predicting component reliability, particularly for systems with extended stockpile life requirements. Nondestructive testing capabilities for component reliability would significantly enhance lifetime predictions. For example, if the detection of crack propagation through a solder joint can be demonstrated, this technique could be used to develop baseline information to statistically determine solder joint lifelengths. This report will investigate high frequency signal response techniques for nondestructively evaluating the electrical behavior of thick film hybrid transmission lines.

More Details

Stochastic Parameter Development for PORFLOW Simulations of the Hanford AX Tank Farm

Ho, Clifford K.

Parameters have been identified that can be modeled stochastically using PORFLOW and Latin Hypercube Sampling (LHS). These parameters include hydrologic and transport properties in the vadose and saturated zones, as well as source-term parameters and infiltration rates. A number of resources were used to define the parameter distributions, primarily those provided in the Retrieval Performance Evaluation Report (Jacobs, 1998). A linear rank regression was performed on the vadose-zone hydrologic parameters given in Khaleel and Freeman (1995) to determine if correlations existed between pairs of parameters. No strong correlations were found among the vadose-zone hydrologic parameters, and it was recommended that these parameters be sampled independently until future data or analyses reveal a strong correlation or functional relationship between parameters. Other distributions for source-term parameters, infiltration rates, and saturated-zone parameters that are required to stochastically analyze the performance of the AX Tank Farm using LHS/PORFLOW were adapted from distributions and values reported in Jacobs (1998) and other literature sources. Discussions pertaining to the geologic conceptualization, vadose-zone modeling, and saturated-zone modeling of the AX Tank Farm are also presented.

More Details
Results 92401–92600 of 99,299
Results 92401–92600 of 99,299