Publications

21 Results

Search results

Jump to search filters

A mid-layer model for human reliability analysis : understanding the cognitive causes of human failure events

Hendrickson, Stacey M.; Forester, John A.

The Office of Nuclear Regulatory Research (RES) at the US Nuclear Regulatory Commission (USNRC) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method's middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identified human failure events, analysts identify potential failure mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.

More Details

An overview of the evolution of human reliability analysis in the context of probabilistic risk assessment

Forester, John A.

Since the Reactor Safety Study in the early 1970's, human reliability analysis (HRA) has been evolving towards a better ability to account for the factors and conditions that can lead humans to take unsafe actions and thereby provide better estimates of the likelihood of human error for probabilistic risk assessments (PRAs). The purpose of this paper is to provide an overview of recent reviews of operational events and advances in the behavioral sciences that have impacted the evolution of HRA methods and contributed to improvements. The paper discusses the importance of human errors in complex human-technical systems, examines why humans contribute to accidents and unsafe conditions, and discusses how lessons learned over the years have changed the perspective and approach for modeling human behavior in PRAs of complicated domains such as nuclear power plants. It is argued that it has become increasingly more important to understand and model the more cognitive aspects of human performance and to address the broader range of factors that have been shown to influence human performance in complex domains. The paper concludes by addressing the current ability of HRA to adequately predict human failure events and their likelihood.

More Details

EPRI/NRC fire human reliability analysis guidelines

American Nuclear Society - International Topical Meeting on Probabilistic Safety Assessment and Analysis, PSA 2008

Cooper, Susan E.; Hill, Kendra; Julius, Jeff; Grobbelaar, Jan; Kohlhepp, Kaydee; Forester, John A.; Hendrickson, Stacey M.; Hannaman, Bill; Najafi, Bijan

During the 1990's the Electric Power Research Institute (EPRI) developed methods for fire risk analysis to support its utility members in the preparation of responses to Generic Letter 88-20, Supplement 4, "Individual Plant Examination - External Events" (IPEEE). This effort produced a Fire Risk Assessment methodology for at-power that was used by the majority of US Nuclear Power Plants (NPPs) in support of the IPEEE program and several NPPs oversees. Although these methods were acceptable for accomplishing the objectives of the IPEEE, EPRI and the U.S. Nuclear Regulatory Commission (NRC) recognized that these methods require upgrades to support current requirements for Risk-Informed/Performance-Based (RI/PB) applications. In 2001 EPRI and the NRC Office of Nuclear Regulatory Research (RES) embarked on a cooperative project to improve the state-of-the-art in fire risk assessment to support this new risk-informed environment in fire protection. This project produced a consensus document, NUREG/CR-6850 (EPRI 1011989), entitled "Fire PRA Methodology for Nuclear Power Facilities" which addresses fire risk for at-power operations. This report developed: 1) the process for identification and inclusion of the post-fire Human Failure Events (HFEs), 2) the methodology for assigning quantitative screening values to these HFEs, and 3) the initial considerations of performance shaping factors (PSFs) and related fire effects that may need to be addressed in developing best-estimate Human Error Probabilities (HEPs). However, this document does not describe a methodology to develop these best-estimate HEPs given the PSFs and the fire-related effects. In 2007 EPRI and NRC's RES embarked on another cooperative project to develop explicit guidance for estimating HEPs for human error events under fire generated conditions, building upon existing human reliability analysis (HRA) methods. This paper will describe the progress to date on the development and testing of the fire HRA methodology, which includes addressing the range of fire procedures used in existing plants, the range of strategies for main control room abandonment, and the potential impact of fire-induced spurious electrical effects on crew performance. In addition to developing a detailed HRA approach, one goal of the project is to develop a fire HRA scoping quantification approach that allows derivation of more realistic HEPs than those in the screening approach from NUREG/CR-6850 (EPRI 1011989), while requiring less analytic resources than a detailed HRA. In this approach, detailed HRA will be used only for the more complex actions that cannot meet the criteria for the scoping approach.

More Details

Issues in benchmarking human reliability analysis methods : a literature review

Hendrickson, Stacey M.; Forester, John A.

There is a diversity of human reliability analysis (HRA) methods available for use in assessing human performance within probabilistic risk assessment (PRA). Due to the significant differences in the methods, including the scope, approach, and underlying models, there is a need for an empirical comparison investigating the validity and reliability of the methods. To accomplish this empirical comparison, a benchmarking study is currently underway that compares HRA methods with each other and against operator performance in simulator studies. In order to account for as many effects as possible in the construction of this benchmarking study, a literature review was conducted, reviewing past benchmarking studies in the areas of psychology and risk assessment. A number of lessons learned through these studies are presented in order to aid in the design of future HRA benchmarking endeavors.

More Details

EPRI/NRC-RES fire PRA guide for nuclear power facilities. Volume 1, summary and overview

Forester, John A.; Wyant, Francis J.; Nowlen, Steven P.

This report documents state-of-the-art methods, tools, and data for the conduct of a fire Probabilistic Risk Assessment (PRA) for a commercial nuclear power plant (NPP) application. The methods have been developed under the Fire Risk Re-quantification Study. This study was conducted as a joint activity between EPRI and the U. S. NRC Office of Nuclear Regulatory Research (RES) under the terms of an EPRI/RES Memorandum of Understanding [RS.1] and an accompanying Fire Research Addendum [RS.2]. Industry participants supported demonstration analyses and provided peer review of this methodology. The documented methods are intended to support future applications of Fire PRA, including risk-informed regulatory applications. The documented method reflects state-of-the-art fire risk analysis approaches. The primary objective of the Fire Risk Study was to consolidate recent research and development activities into a single state-of-the-art fire PRA analysis methodology. Methodological issues raised in past fire risk analyses, including the Individual Plant Examination of External Events (IPEEE) fire analyses, have been addressed to the extent allowed by the current state-of-the-art and the overall project scope. Methodological debates were resolved through a consensus process between experts representing both EPRI and RES. The consensus process included a provision whereby each major party (EPRI and RES) could maintain differing technical positions if consensus could not be reached. No cases were encountered where this provision was invoked. While the primary objective of the project was to consolidate existing state-of-the-art methods, in many areas, the newly documented methods represent a significant advancement over previously documented methods. In several areas, this project has, in fact, developed new methods and approaches. Such advances typically relate to areas of past methodological debate.

More Details

A Description of the Revised ATHEANA (A Technique for Human Event Analysis)

Forester, John A.

This paper describes the most recent version of a human reliability analysis (HRA) method called ``A Technique for Human Event Analysis'' (ATHEANA). The new version is documented in NUREG-1624, Rev. 1 [1] and reflects improvements to the method based on comments received from a peer review that was held in 1998 (see [2] for a detailed discussion of the peer review comments) and on the results of an initial trial application of the method conducted at a nuclear power plant in 1997 (see Appendix A in [3]). A summary of the more important recommendations resulting from the peer review and trial application is provided and critical and unique aspects of the revised method are discussed.

More Details

Philosophy of ATHEANA

Forester, John A.

ATHEANA, a second-generation Human Reliability Analysis (HRA) method integrates advances in psychology with engineering, human factors, and Probabilistic Risk Analysis (PRA) disciplines to provide an HRA quantification process and PRA modeling interface that can accommodate and represent human performance in real nuclear power plant events. The method uses the characteristics of serious accidents identified through retrospective analysis of serious operational events to set priorities in a search process for significant human failure events, unsafe acts, and error-forcing context (unfavorable plant conditions combined with negative performance-shaping factors). ATHEANA has been tested in a demonstration project at an operating pressurized water reactor.

More Details

Discussion of Comments from a Peer Review of A Technique for Human Event Anlysis (ATHEANA)

Forester, John A.

In May of 1998, a technical basis and implementation guidelines document for A Technique for Human Event Analysis (ATHEANA) was issued as a draft report for public comment (NUREG-1624). In conjunction with the release of draft NUREG- 1624, a peer review of the new human reliability analysis method its documentation and the results of an initial test of the method was held over a two-day period in June 1998 in Seattle, Washington. Four internationally known and respected experts in HK4 or probabilistic risk assessment were selected to serve as the peer reviewers. In addition, approximately 20 other individuals with an interest in HRA and ATHEANA also attended the peer and were invited to provide comments. The peer review team was asked to comment on any aspect of the method or the report in which improvements could be made and to discuss its strengths and weaknesses. They were asked to focus on two major aspects: Are the basic premises of ATHEANA on solid ground and is the conceptual basis adequate? Is the ATHEANA implementation process adequate given the description of the intended users in the documentation? The four peer reviewers asked questions and provided oral comments during the peer review meeting and provided written comments approximately two weeks after the completion of the meeting. This paper discusses their major comments.

More Details

Discussion of comments from a peer review of a technique for human event analysis (ATHEANA)

Forester, John A.

In May of 1998, a technical basis and implementation guidelines document for A Technique for Human Event Analysis (ATHEANA) was issued as a draft report for public comment (NUREG-1624). In conjunction with the release of the draft NUREG, a paper review of the method, its documentation, and the results of an initial test of the method was held over a two-day period in Seattle, Washington, in June of 1998. Four internationally-known and respected experts in human reliability analysis (HRA) were selected to serve as the peer reviewers and were paid for their services. In addition, approximately 20 other individuals with an interest in HRA and ATHEANA also attended the peer review meeting and were invited to provide comments. The peer review team was asked to comment on any aspect of the method or the report in which improvements could be made and to discuss its strengths and weaknesses. All of the reviewers thought the ATEANA method had made significant contributions to the field of PRA/HRA, in particular by addressing the most important open questions and issues in HRA, by attempting to develop an integrated approach, and by developing a framework capable of identifying types of unsafe actions that generally have not been considered using existing methods. The reviewers had many concerns about specific aspects of the methodology and made many recommendations for ways to improve and extend the method, and to make its application more cost effective and useful to PRA in general. Details of the reviewers` comments and the ATHEANA team`s responses to specific criticisms will be discussed.

More Details

Application of a new technique for human event analysis (ATHEANA) at a pressurized-water reactor

Forester, John A.

Over the past several years, the US Nuclear Regulatory Commission (NRC) has sponsored the development of a new method for performing human reliability analyses (HRAs). A major impetus for the program was the recognized need for a method that would not only address errors of omission (EOOs), but also errors of commission (EOCs). Although several documents have been issued describing the basis and development of the new method referred to as ``A Technique for Human Event Analysis`` (ATHEANA), two documents were drafted to initially provide the necessary documentation for applying the method: the frame of reference (FOR) manual, which served as the technical basis document for the method and the implementation guideline (IG), which provided step by step guidance for applying the method. Upon the completion of the draft FOR manual and the draft IG in April 1997, along with several step-throughs of the process by the development team, the method was ready for a third-party test. The method was demonstrated at Seabrook Station in July 1997. The main goals of the demonstration were to (1) test the ATHENA process as described in the FOR manual and the IG, (2) test a training package developed for the method, (3) test the hypothesis that plant operators and trainers have significant insight into the EFCs that can make UAs more likely, and (4) identify ways to improve the method and its documentation. The results of the Seabrook demonstration are evaluated against the success criteria, and important findings and recommendations regarding ATHENA that were obtained from the demonstration are presented here.

More Details

Results of a nuclear power plant Application of a new technique for human error analysis (ATHEANA)

Forester, John A.

A new method to analyze human errors has been demonstrated at a pressurized water reactor (PWR) nuclear power plant. This was the first application of the new method referred to as A Technique for Human Error Analysis (ATHEANA). The main goals of the demonstration were to test the ATHEANA process as described in the frame-of-reference manual and the implementation guideline, test a training package developed for the method, test the hypothesis that plant operators and trainers have significant insight into the error-forcing-contexts (EFCs) that can make unsafe actions (UAs) more likely, and to identify ways to improve the method and its documentation. A set of criteria to evaluate the {open_quotes}success{close_quotes} of the ATHEANA method as used in the demonstration was identified. A human reliability analysis (HRA) team was formed that consisted of an expert in probabilistic risk assessment (PRA) with some background in HRA (not ATHEANA) and four personnel from the nuclear power plant. Personnel from the plant included two individuals from their PRA staff and two individuals from their training staff. Both individuals from training are currently licensed operators and one of them was a senior reactor operator {open_quotes}on shift{close_quotes} until a few months before the demonstration. The demonstration was conducted over a 5 month period and was observed by members of the Nuclear Regulatory Commission`s ATHEANA development team, who also served as consultants to the HRA team when necessary. Example results of the demonstration to date, including identified human failure events (HFEs), UAs, and EFCs are discussed. Also addressed is how simulator exercises are used in the ATHEANA demonstration project.

More Details

Human action perspectives based on individual plant examination results

Forester, John A.

This paper provides perspectives on human actions gained from reviewing 76 individual plant examination (IPE) submittals. Human actions found to be important in boiling water reactors (BWRs) and in pressurized water reactors (PWRs) are presented and the events most frequently found important are discussed. Since there are numerous factors that can influence the quantification of human error probabilities (HEPs) and introduce significant variability in the resulting HEPs (which in turn can influence which events are found to be important), the variability in HEPs for similar events across IPEs is examined to assess the extent to which variability in results is due to real versus artifactual differences. Finally, similarities and differences in human action observations across BWRs and PWRs are examined.

More Details

Human event observations in the individual plant examinations

Forester, John A.

A major objective of the Nuclear Regulatory Commission`s (NRC) Individual Plant Examination (IPE) Insights Program is to identify the important determinants of core damage frequency (CDF) for the different reactor and containment types and plant designs as indicated in the IPEs. The human reliability analysis (HRA) is a critical component of the probabilistic risk assessments (PRAS) which were done for the IPES. The determination and selection of human actions for incorporation into the event and fault tree models and the quantification of their failure probabilities can have an important impact on the resulting estimates of CDF and risk. Therefore, two important goals of the NRCs IPE Insights Program are (1) to determine the extent to which human actions and their corresponding failure probabilities influenced the results of the IPEs and (2) to identify which factors played significant roles in determining the differences and similarities in the results of the HRA analyses across the different plants. To obtain the relevant information, the NRC`s IPE database, which contains information on plant design, CDF, and containment performance obtained from the IPES, was used in conjunction with a systematic examination of the HRA analyses and results from the IPES. Regarding the extent to which the results of the HRA analyses were significant contributors to the plants` CDFs, examinations of several different measures indicated that while individual human actions could have important influences on CDF for particular initiators, the HRA results did not appear to be the most significant driver of plant risk (CDF). Another finding was that while there were relatively wide variations in the calculated human error probabilities (HEPs) for similar events across plants, there was no evidence for any systematic variation as a function of the HRA methods used in the analyses.

More Details
21 Results
21 Results