Publications

Results 8351–8400 of 99,299

Search results

Jump to search filters

Improved Throughput and Analysis of Scratch Test Results via Automation and Machine Learning

Lim, Hannah; Curry, John; Dugger, Michael T.

A data analysis automation interface that incorporates machine learning (ML) has been developed to improve productivity, efficiency, and consistency in identifying and defining critical load values (or other values associated with optically identifiable characteristics) of a coating when a scratch test is performed. In this specific program, the machine learning component of the program has been trained to identify the Critical Load 2 (LC2 ) value by analyzing images of the scratch tracks created in each test. An optical examination of the scratch by a human operator is currently used to determine where this value occurs. However, the vagueness of the standard has led to varying interpretations and nonuniform usage by different operators at different laboratories where the test is implemented, resulting in multiple definitions of the desired parameter. Using a standard set of training and validation images to create the dataset, the critical load can be identified consistently amongst different laboratories using the automation interface without requiring the training of human operators. When the model was used in conjunction with an instrument manufacturer's scratch test software, the model produced accurate and repeatable results and defined LC2 values in as little as half of the time compared to a human operator. When combined with a program that automates other aspects of the scratch testing process usually conducted by a human operator, scratch testing and analysis can occur with little to no intervention from a human beyond initial setup and frees them to complete other work in the lab.

More Details

PACT Module Design Acceptance Criteria (Research)

Stein, Joshua; Schelhas, Laura

For the PACT center to both develop testing protocols and provide service to the metal halide perovskite (MHP) PV community, PACT will seek modules (mini and full-sized) for testing purposes. To ensure both safety and high-quality samples PACT publishes acceptance criteria to define the minimum characteristics of modules the center will accept for testing. These criteria help to ensure we are accepting technologies that are compatible with our technical facilities and testing equipment and can transition to large scale commercial manufacturing. This module design acceptance criteria document is for research partners (academia, national laboratories) and is different from the acceptance criteria for industry partners.

More Details

PACT Perovskite PV Module Stress Testing Protocol (Version 0.0)

Schellhaas, Laura; Stein, Joshua

The purpose of this protocol is to use accelerated stress testing to assess the durability of metal halide perovskite (MHP) photovoltaic (PV) modules. The protocol aims to apply field relevant stressors to packaged MHP modules to screen for early failures that may be observed in the field. The current protocol has been designed with a glass/glass-PIB edge seal, no encapsulant package in mind. PACT anticipates adding additional testing sequences to evaluate additional stressors (e.g., PID, reverse bias) in the future.

More Details
Results 8351–8400 of 99,299
Results 8351–8400 of 99,299