Publications
Search results
Jump to search filtersVisual Servoing: A technology in search of an application
Considerable research has been performed on Robotic Visual Servoing (RVS) over the past decade. Using real-time visual feedback, researchers have demonstrated that robotic systems can pick up moving parts, insert bolts, apply sealant, and guide vehicles. With the rapid improvements being made in computing and image processing hardware, one would expect that every robot manufacturer would have a RVS option by the end of the 1990s. So why aren`t the Fanucs, ABBs, Adepts, and Motomans of the world investing heavily in RVS? I would suggest four seasons: cost, complexity, reliability, and lack of demand. Solutions to the first three are approaching the point where RVS could be commercially available; however, the lack of demand is keeping RVS from becoming a reality in the near future. A new set of applications is needed to focus near term RVS development. These must be applications which currently do not have solutions. Once developed and working in one application area, the technology is more likely to quickly spread to other areas. DOE has several applications that are looking for technological solutions, such as agile weapons production, weapons disassembly, decontamination and dismantlement of nuclear facilities, and hazardous waste remediation. This paper will examine a few of these areas and suggest directions for application-driven visual servoing research.
Status report on the NCSL Intrinsic/Derived Standards Committee
The history and present status of the NCSL intrinsic/Derived Standards Committee is presented, including a review of the current published Recommended Intrinsic/Derived Standard Practices (RISPs) and the four Working Groups that are in the process of developing new RISPs. One of the documents under development is a Reference Catalogue that documents important information associated with over forty intrinsic/derived standards. The generic information on each standard in the Catalogue, as well as its Table of contents, are presented.
Laser drilling of printed wiring boards: Final report on work sponsored by Sandia LDRD program
Traditionally, electrical connections- between layers of a printed wiring board are formed by mechanically drilling holes through all layers and then plating the resulting structure to provide electrical connections between the layers. The mechanical drilling process is very capital- and labor-intensive and is often a bottleneck in board production. The goal of this program was the development of laser drilling as an alternative to mechanical drilling. Cost advantages and the ability to produce smaller holes were both of interest. Although it had initially been intended to develop all processes at Sandia, suitable emerging processes and materials were identified in industry during the course of the work. Because of these industry efforts, it was decided to terminate the LDRD efforts after the first year of work and to pursue collaborative development efforts with industrial partners. A laser drilling facility is currently being developed at Sandia to pursue this work further.
Containment removal from solid waste by supercritical carbon dioxide
Large quantities of solid wastes such as rags, kimwipes, swabs, coveralls, gloves, etc., contaminated with oils, greases and hazardous solvents are generated by industry and the government. If the hazardous components (offs, greases and solvents) could be segregated from the much larger bulk of non-hazardous material, then these solid materials could potentially be handled as sanitary waste, at a significant cost savings. AlliedSignal KCP, a typical DOE manufacturing site, spent several hundred thousand dollars in CY92 for disposal of contaminated solid wastes. Similarly, Naval Air Station North Island, San Diego, also spent several hundred thousand dollars in CY91 for disposal of rags. Under the Department of Energy (DOE)/United States Air Force (USAF) Memorandum of Understanding, the objective of this joint AlliedSignal KCP/Sandia National Laboratories project is to demonstrate the feasibility of using supercritical carbon dioxide (SC-CO{sub 2}) to segregate hazardous oils, greases, and organic solvents from non-hazardous solid waste such as rags, wipes, swabs, coveralls, gloves, etc. Supercritical carbon dioxide possesses many of the characteristics desired in an ``environmentally acceptable`` solvent system. It is nontoxic, inexpensive, and recyclable. Carbon dioxide possesses a moderate critical temperature (31{degrees}C) and pressure (1071 psi). At 37{degrees}C and pressures greater than 2000 psi, the density is greater than 0.8 g/cc. Contaminants dissolved in the supercritical CO{sub 2} solvent are separated out by expansion of the fluid to a subcritical pressure where CO{sub 2} is a gas and the dissolved materials precipitate out (usually as a liquid or solid). The gaseous CO{sub 2} can then be recompressed and recycled.
Policies for implementing network firewalls
Brown, C.D.
Corporate networks are frequently protected by {open_quotes}firewalls{close_quotes} or gateway systems that control access to/from other networks, e.g., the Internet, in order to reduce the network`s vulnerability to hackers and other unauthorized access. Firewalls typically limit access to particular network nodes and application protocols, and they often perform special authentication and authorization functions. One of the difficult issues associated with network firewalls is determining which applications should be permitted through the firewall. For example, many networks permit the exchange of electronic mail with the outside but do not permit file access to be initiated by outside users, as this might allow outside users to access sensitive data or to surreptitiously modify data or programs (e.g., to intall Trojan Horse software). However, if access through firewalls is severely restricted, legitimate network users may find it difficult or impossible to collaborate with outside users and to share data. Some of the most serious issues regarding firewalls involve setting policies for firewalls with the goal of achieving an acceptable balance between the need for greater functionality and the associated risks. Two common firewall implementation techniques, screening routers and application gateways, are discussed below, followed by some common policies implemented by network firewalls.
Math and science illiteracy: Social and economic impacts
Today`s highly competitive global economy is being driven by increasingly rapid technological development. This paper explores the problems of math and science illiteracy in the United States and the potential impact on our economic survival in this environment during the next century. Established educational methods that reward task performance, emphasize passive lecture, and fail to demonstrate relevance to real life are partly to blame. Social norms, stereotypes, and race and gender bias also have an impact. To address this crisis, we need to question the philosophy of an educational system that values task over concept. Many schools have already initiated programs at all grade levels to make math and science learning more relevant, stimulating, and fun. Teaching methods that integrate math and science learning with teamwork, social context, and other academic subjects promote the development of higher-order thinking skills and help students see math and science as necessary skills.
Flow visualization for Lagrangian particle methods
In particle methods, each particle represents a finite region over which there is a distribution of the field quantity of interest. The field value at any point is calculated by summing the distribution functions for all the particles. This summation procedure does not require the use of any connectivities to generate continuous fields. Various AVS modules and networks have been developed that enable us to visualize the results from particle methods. This will be demonstrated by visualizing a numerical simulation of a rising, chaotic bubble. In this fluid dynamics simulation, each particle represents a region with a specified vorticity distribution.
Fatigue case study and loading spectra for wind turbines
The paper discusses two aspects of Sandia`s Wind Energy Program. The first section of the paper presents a case study of fatigue in wind turbines. This case study was prepared for the American Society of Testing Material`s (ASTM) Standard Technical Publication (STP) on fatigue education. Using the LIFE2 code, the student is lead through the process of cumulative damage summation for wind turbines and typical data are used to demonstrate the range of life estimates that will result from typical parameter variations. The second section summarizes the results from a workshop held by Sandia and the National Renewable Energy Laboratory (NREL) to discuss fatigue life prediction methodologies. This section summarizes the workshop discussions on the use of statistical modeling to deduce the shape and magnitude of the low-probability-of-occurrence, high-stress tail of the load distribution on a wind turbine during normal operation.
The mixed waste landfill integrated demonstration
The Mixed Waste Landfill Integrated Demonstration (MWLID) focuses on ``in-situ`` characterization, monitoring, remediation, and containment of landfills in arid environments that contain hazardous and mixed waste. The MWLID mission is to assess, demonstrate, and transfer technologies and systems that lead to faster, better, cheaper, and safer cleanup. Most important, the demonstrated technologies will be evaluated against the baseline of conventional technologies and systems. The comparison will include the cost, efficiency, risk, and feasibility of using these innovative technologies at other sites.
On-sun test results from second-generation and advanced-concepts alkali-metal pool-boiler receivers
Two 75-kW{sub t} alkali-metal pool-boiler solar receivers have been successfully tested at Sandia National Laboratories` National Solar Thermal Test Facility. The first one, Sandia`s `` second-generation pool-boiler receiver,`` was designed to address commercialization issues identified during post-test assessment of Sandia`s first-generation pool-boiler receiver. It was constructed from Haynes alloy 230 and contained the alkali-metal alloy NaK-78. The absorber`s wetted side had a brazed-on powder-metal coating to stabilize boiling. This receiver was evaluated for boiling stability, hot- and warm-restart behavior, and thermal efficiency. Boiling was stable under all conditions. All of the hot restarts were successful. Mild transient hot spots observed during some hot restarts were eliminated by the addition of 1/3 torr of xenon to the vapor space. All of the warm restarts were also successful. The heat-transfer crisis that damaged the first receiver did not recur. Thermal efficiency was 92.3% at 750{degrees}C with 69.6 kW{sub t} solar input. The second receiver tested, Sandia`s ``advanced-concepts receiver,`` was a replica of the first-generation receiver except that the cavities, which were electric-discharge-machined in the absorber for boiling stability, were eliminated. This step was motivated by bench-scale test results that showed that boiling stability improved with increased heated-surface area, tilt of the heated surface from vertical, and added xenon. The bench-scale results suggested that stable boiling might be possible without heated-surface modification in a 75-kW{sub t} receiver. Boiling in the advanced-concepts receiver with 1/3 torr of xenon added has been stable under all conditions, confirming the bench-scale tests.
A more exact analysis of Sandia Laser Tracker data
The Sandia Laser Tracker (LT) systems illuminate a cooperative target with a diverged Argon-ion laser beam and track the resulting bright target using a servo-controlled turning mirror. Raw data is digitally recorded in real time and analyzed later when more time is available. The recorded data consists of azimuth and elevation of the tracking mirror, tracking error signals, and range to the target. If the target is tracked perfectly, the error signals will always be zero. The data reduction for this simplified, zero-error condition can be accomplished with very few lines of code. To date, all data reduction for LTI has been done using this zero-error assumption. The more general data reduction problem using the tracking error signals is a much more involved calculation and is referred to as ``using the error foldback routine.`` Detailed theory and vector analysis behind the data reduction and error decoupling algorithms used in the LT systems are described. Errors and corrections to the original document uncovered in over ten years of use are also noted and corrected.
Sandia Lightning Early Warning Network: Digital-based upgrade
Boyd, G.M.
This report describes the layout and operation of the recently upgraded Sandia Lightning Early Warning Network, which was upgraded from an analog-based to a digital-based telemetry system.
Preparation of silica or alumina pillared crystalline titanates
Layered crystalline titanates (CT) [Anthony and Dosch, US Patent 5 177 045 (1993)] are pillared with tetraethyl orthosilicate, 3-aminopropyltrimethoxysilane, and aluminum acetylacetonate to prepare porous and high surface area supports for sulfided NiMo catalyst. Tetra-ethyl orthosilicate or aluminum acetylacetonate intercalated CT are prepared by stepwise intercalation. First, the basal distance is increased by n-alkylammonium ions prior to intercalation with inorganic compounds. However, an aqueous solution of 3-aminopropyltrimethoxysilane could directly pillar CT without first swelling the titanate with n-alkylamine. The catalytic activities for hydrogenation of pyrene of sulfided NiMo supported silica or alumina pillared CT were higher than those of commercial catalysts (Shell324 and Amocat1C). The silicon and aluminum contents of the pillared CT, used as supports, have a considerable effect on the catalytic activities and physical properties of the supports.
The development of laser ignited deflagration-to-detonation transition (DDT) detonators and pyrotechnic actuators
The use of laser ignited explosive components has been recognized as a safety enhancement over existing electrical explosive devices (EEDs). Sandia has been pursuing the development of optical ordnance for many years with recent emphasis on developing optical deflagration-to-detonation (DDT) detonators and pyrotechnic actuators. These low energy optical ordnance devices can be ignited with either a semiconductor diode laser, laser diode arrays or a solid state rod laser. By using a semiconductor laser diode, the safety improvement can be made without sacrificing performance since the input energy required for the laser diode and the explosive output are similar to existing electrical systems. The use of higher powered laser diode arrays or rod lasers may have advantages in fast DDT applications or lossy optical environments such as long fiber applications and applications with numerous optical connectors. Recent results from our continued study of optical ignition of explosive and pyrotechnic materials are presented. These areas of investigation can be separated into three different margin categories: (1) the margin relative to intended inputs ( i.e. powder performance as a function of laser input variation), (2) the margin relative to anticipated environments (i.e. powder performance as a function of thermal environment variation), and (3) the margin relative to unintended environments (i.e. responses to abnormal environments or safety).
Processing solid propellants for recycling
Whinnery, L.L.; Griffiths, S.K.; Handrock, J.L.; Lipkin, J.
Rapid evolution in the structure of military forces worldwide is resulting in the retirement of numerous weapon systems. Many of these systems include rocket motors containing highly energetic propellants based on hazardous nitrocellulose/nitroglycerin (NC/NG) mixtures. Even as the surplus quantities of such material increases, however, current disposal methods -- principally open burning and open detonation (OB/OD) -- are coming under close scrutiny from environmental regulators. Environmentally conscious alternatives to disposal of propellant and explosives are thus receiving renewed interest. Recycle and reuse alternatives to OB/OD appear particularly attractive because some of the energetic materials in the inventories of surplus weapon systems represent potentially valuable resources to the commercial explosives and chemical industries. The ability to reclaim such resources is therefore likely to be a key requirement of any successful technology of the future in rocket motor demilitarization. This document consists of view graphs from the poster session.
A fully coupled thermal, chemical, mechanical cookoff model
Cookoff modeling of confined energetic materials involves the coupling of thermal, chemical and mechanical effects. In the past, modeling has focussed on the prediction of thermal runaway with little regard to the effects of mechanical behavior of the energetic material. To address the mechanical response of the energetic material, a constitutive submodel has been developed which can be incorporated into thermal-chemical-mechanical analysis. This work presents development of this submodel and its incorporation into a fully coupled one-dimensional, thermal-chemical-mechanical computer code to simulate thermal initiation of energetic materials. Model predictions include temperature, chemical species, stress, strain, solid/gas pressure, solid/gas density, yield function, and gas volume fraction. Sample results from a scaled aluminum tube filled with RDX exposed to a constant temperature bath at 500 K will be displayed. The micromechanical submodel is based on bubble mechanics which describes nucleation, decomposition, and elastic/plastic mechanical behavior. This constitutive material description requires input of temperatures and reacted fraction of the energetic material as provided by the reactive heat flow code, XCHEM, and the mechanical response is predicted using a quasistatic mechanics code, SANTOS. A parametric sensitivity analysis indicates that a small degree of decomposition causes significant pressurization of the energetic material, which implies that cookoff modeling must consider the strong interaction between thermal-chemistry and mechanics. This document consists of view graphs from the poster session.
The thermochemistry and reaction mechanisms in the decomposition of energetic materials
The chemical processes involved in the decomposition of energetic materials have been investigated theoretically using quantum chemical methods to determine the thermochemistry and reaction pathways. The Bond-Additivity-Corrected Moller-Plesset 4th order perturbation theory method (BAC-MP4) has been used to determine heats of formation and free energies of reaction intermediates of decomposition. In addition, the BAC-MP4 method has been used to determine action pathways involving these intermediates. A theoretical method for calculating solvation energies has been developed to treat the non-idealities of high pressure and the condensed phase. The resulting chemical processes involving decomposition and ignition are presented for nitrate compounds, nitramines, and nitromethane.
DDT modeling and shock compression experiments of porous or damaged energetic materials
Baer, M.R.; Anderson, M.U.; Graham, R.A.
In this presentation, we present modeling of DDT in porous energetic materials and experimental studies of a time-resolved, shock compression of highly porous inert and reactive materials. This combined theoretical and experimental studies explore the nature of the microscale processes of consolidation, deformation and reaction which are key features of the shock response of porous or damaged energetic materials. The theoretical modeling is based on the theory of mixtures in which multiphase mixtures are treated in complete nonequilibrium allowing for internal boundary effects associated mass/momentum and energy exchange between phases, relative flow, rate-dependent compaction behavior, multistage chemistry and interphase boundary effects. Numerous studies of low-velocity impacts using a high resolution adaptive finite element method are presented which replicate experimental observations. The incorporation of this model into multi-material hydrocode analysis will be discussed to address the effects of confinement and its influence on accelerated combustion behavior. The experimental studies will focus on the use of PVDF piezoelectric polymer stress-rate gauge to precisely measure the input and propagating shock stress response of porous materials. In addition to single constituent porous materials, such as granular HMX, we have resolved shock waves in porous composite intermetallic powders that confirm a dispersive wave nature which is highly morphologically and material dependent. This document consists of viewgraphs from the poster session.
On the use of fuzzy logic assessment for high consequence implementation risk analysis
``High consequence`` operations are systems, structures, and/or strategies for which it is crucial to provide assured protection against some potential catastrophe or catastrophes. The word ``catastrophe`` implies a significant loss of a resource (e.g., money, lives, health, environment, national security, etc.). The implementation of operations that are to be as catastrophe-free as possible must incorporate a very high level of protection. Unfortunately, real world limitations on available resources, mainly money and time, preclude absolute protection. For this reason, conventional ``risk analysis`` focuses on ``cost-effective`` protection, demonstrating through analysis that the benefits of any protective measures chosen outweigh their cost. This is a ``crisp`` one-parameter (usually monetary) comparison. A major problem with this approach, especially for high consequence operations, is that it may not be possible to accurately determine quantitative ``costs,`` and furthermore, the costs may not be accurately quantifiable. Similarly, it may not be possible to accurately determine or to quantify the benefits of protection in high consequence operations. These weaknesses are addressed in this paper by introducing multiple parameters instead of a single monetary measure both for costs of implementing protective measures and their benefits. In addition, a fuzzy-algebra comparison based on fuzzy number theory is introduced as a tool in providing cost/benefit tradeoff depiction, with the incorporation of measures of the uncertainty that necessarily exists in the input information. The result allows a more informative comparison to be made through use of fuzzy results, especially at the extreme bounds of the uncertainty.
The Bayou Choctaw Oil Shipment Test
In early October of 1993, an oil shipment of about 1 million barrels was made from the Bayou Choctaw Strategic Petroleum Reserve storage facility to St. James Terminal. During the shipment, oil temperatures and soil temperatures along the pipeline were recorded. The field data were used to make estimations of soil thermal properties, thermal conductivity and specific heat. These data were also used to validate and calibrate a heat transfer code, OILPIP, which has been used to calculate pipeline cooling of oil during a drawdown.
Portable Doppler interferometer system for shock diagnostics and high speed motion
VISAR (Velocity Interferometer System for Any Reflector) is a system that uses the Doppler effect and is widely used for measuring the velocity of projectiles, detonations, flying plates, shock pressures (particle velocity) and other high speed/high acceleration motion. Other methods of measurement such as accelerometers and pressure gauges have disadvantages in that they are sensitive to radiation, electromagnetic pulses, and their mass can drastically alter the velocity of the projectile. VISAR uses single frequency-single mode laser fight focused onto a target of interest. Reflected fight from the target is collected and sent through a modified, unequal leg Michelson interferometer. In the interferometer the light is split into two components which travel through the legs of the interferometer cavity and are then recombined. When the light recombines, an interference pattern is created which can range from dark (destructive interference) to bright (constructive interference). When the target moves, the reflected laser light experiences a frequency shift (increase) with respect to the frequency from the target in a static condition. Since the Doppler shifted light is split and routed through an unequal leg interferometer cavity, there is a time lag of the light containing the Doppler information at the recombination point in the interferometer. The effect of the time lag is to create a sinusoidally changing interference pattern (commonly called fringes). Since the interferometer time delay, laser wavelength, and the speed of light are known, an accurate measurement of target velocity/acceleration may be measured by analyzing both the number of tinges and the speed of tinge generation (system accuracy is 3--4%).
Effects of two-phase flow on the deflagration of porous energetic materials
The combustion behavior of energetic materials (e.g., solid propellants) has long been of interest in the fields of propulsion and pyrotechnics. In many such applications, it is becoming increasingly clear that two-phase flow effects play an important role, especially since, during combustion, most homogeneous solid propellants develop thin multi-phase layers at their surfaces in which finite-rate exothermic reactions occur. In addition, there is a growing interest in the behavior of porous energetic solids, since even initially dense materials can develop significant void fractions if, at any time, they are exposed to abnormal thermal environments. The deflagration characteristics of such ``damaged`` materials may then differ significantly from those of the pristine material due, at least in part, to gas flow in the solid/gas preheat region. The presence of gas in the porous solid in turn results in a more pronounced two-phase effect in the multi-phase surface layer, such as in the liquid melt region of nitramine propellants, which thus tend to exhibit extensive bubbling in an exothermic foam layer. The present analysis is largely applicable to this latter class of propellants.
Thermal decomposition reactions of HMX and RDX and their importance in predicting cookoff hazards
Behrens Jr., R.; Bulusu, S.
To develop robust models for predicting the response of munitions under abnormal conditions associated with cookoff, it is necessary to be able to accurately characterize the following: the time to ignition, the location of the ignition point within the munition, and the combustive behavior of the damaged energetic material after ignition. For, the response of the munition, as controlled by these parameters, will determine whether its response will be characterized by a relatively mild deflagration or whether it will be characterized by a more damaging detonation. Several of the underlying properties of the energetic materials used in munitions that must be understood in order to accurately characterize these parameters are the chemical and physical changes that occur in these energetic materials as they are heated. The chemical changes involve overcoming the forces that tend to stabilize these materials, such as binding within the crystal lattice or intermolecular hydrogen bonding, and their transformation to less stable forms, such as mixtures of gases with high energy content. The physical changes typically involve phase changes of the material. One significant phase change is the slow transformation of the energetic materials from the solid reactant to gas phase products. This transformation can lead initially to the formation of high pressure gas bubbles within the solid particles and ultimately to changes in the porosity and gas permeability of the energetic material formulation. The presence of these reactive gases within high pressure bubbles can lead to increased hot spot formation of the material if it is compressed. The increased porosity can lead to significant increases in the burn rates of these materials at high pressures.
Equations of state for explosive detonation products: The PANDA model
Kerley, G.I.
This paper discusses a thermochemical model for calculating equations of state (EOS) for the detonation products of explosives. This model, which was first presented at the Eighth Detonation Symposium, is available in the PANDA code and is referred to here as ``the Panda model``. The basic features of the PANDA model are as follows. (1) Statistical-mechanical theories are used to construct EOS tables for each of the chemical species that are to be allowed in the detonation products. (2) The ideal mixing model is used to compute the thermodynamic functions for a mixture of these species, and the composition of the system is determined from assumption of chemical equilibrium. (3) For hydrocode calculations, the detonation product EOS are used in tabular form, together with a reactive burn model that allows description of shock-induced initiation and growth or failure as well as ideal detonation wave propagation. This model has been implemented in the three-dimensional Eulerian code, CTH.
Blasting detonators incorporating semiconductor bridge technology
Bickes Jr., R.W.
The enormity of the coal mine and extraction industries in Russia and the obvious need in both Russia and the US for cost savings and enhanced safety in those industries suggests that joint studies and research would be of mutual benefit. The author suggests that mine sites and well platforms in Russia offer an excellent opportunity for the testing of Sandia`s precise time-delay semiconductor bridge detonators, with the potential for commercialization of the detonators for Russian and other world markets by both US and Russian companies. Sandia`s semiconductor bridge is generating interest among the blasting, mining and perforation industries. The semiconductor bridge is approximately 100 microns long, 380 microns wide and 2 microns thick. The input energy required for semiconductor bridge ignition is one-tenth the energy required for conventional bridgewire devices. Because semiconductor bridge processing is compatible with other microcircuit processing, timing and logic circuits can be incorporated onto the chip with the bridge. These circuits can provide for the precise timing demanded for cast effecting blasting. Indeed tests by Martin Marietta and computer studies by Sandia have shown that such precise timing provides for more uniform rock fragmentation, less fly rock, reduce4d ground shock, fewer ground contaminants and less dust. Cost studies have revealed that the use of precisely timed semiconductor bridges can provide a savings of $200,000 per site per year. In addition to Russia`s vast mineral resources, the Russian Mining Institute outside Moscow has had significant programs in rock fragmentation for many years. He anticipated that collaborative studies by the Institute and Sandia`s modellers would be a valuable resource for field studies.
SPR-IIIM, A new design for improved performance and reliability coupled with reduced maintenance and personnel dose
Philbin, J.S.; Schmidt, T.R.; Tucker, C.W.
This report discusses the Sandia Pulse Reactor-IIIM (SPR-IIIM) is a modernized, improved version of the SPR-III burst reactor. Fast burst reactors are bare metal reactors that have very short neutron lifetimes (10--20 nanos) and pulse widths (50--100 {mu}s full width half maximum). The Sandia National Laboratories SPR reactors have been used to produce bursts of fast neutrons to simulate certain hostile weapon environments. Generations of weapon-related electronic components and subsystems have been tested for radiation vulnerability and hardness at the SPR Facility. The reactor consists of two right circular hollow cylinder core halves separated by about 3.5 inches when the reactor is shutdown (scrammed). To operate, the movable lower core half (safety block) is driven vertically upward until it makes contact with the stationary upper core half. Final reactivity is added by four external reflector elements, three are nickel control elements and one is an aluminum pulse element. The reflector elements travel up and down just beyond the outer diameter of the cylindrical reactor core and conform to the curvature of the outer vertical surface. The ``pulse`` element adds reactivity at a rate of $10/s. Experiments can be placed in the central cavity (usable space is 7.5-in. OD by 14.5-in. height). The integrated dose in the central cavity is 6{times}10{sup 14} n/cm{sup 2} on a nominal size burst (300{degrees}C{Delta}T). The dose at the closest approach outside the reactor is 1{times}10{sup 14} n/cm{sup 2}. The unmoderated neutron spectrum peaks at {approximately}350 keV.
Display techniques for dynamic network data in transportation GIS
Interest in the characteristics of urban street networks is increasing at the same time new monitoring technologies are delivering detailed traffic data. These emerging streams of data may lead to the dilemma that airborne remote sensing has faced: how to select and access the data, and what meaning is hidden in them? computer-assisted visualization techniques are needed to portray these dynamic data. Of equal importance are controls that let the user filter, symbolize, and replay the data to reveal patterns and trends over varying time spans. We discuss a prototype software system that addresses these requirements.
Real-time SAW measurements of NVR in cleanroom and in microenvironment
Liang, A.Y.
Using a real-time, Surface Acoustic Wave (SAW) sensing instrument supplied by Femtometrics, we have measured organic contamination, or nonvolatile residues (NVR), in both a cleanroom and a microenvironment. To demonstrate the {open_quotes}real-time{close_quotes} NVR detectability and sensitivity of the SAW instrument, controlled contamination experiments with photoresist material were also conducted. In addition, two cleaning methods for removing contamination from used sensors have been evaluated. One technique uses the on-board temperature varying capability of the SAW instrument, while the other technique utilizes a uv-ozone cleaner for the sensor cleaning. Preliminary results from SAW measurements in the cleanroom and in a microenvironment and tests to evaluate sensor cleaning techniques are presented in this report. A concluding summary with an assessment of the current SAW instrument and potential future applications for this technology is also presented.
The influence of VAR processes and parameters on white spot formation in Alloy 718
Significant progress has occurred lately regarding the classification, characterization, and formation of white spots during vacuum arc remelting (VAR). White spots have been generally split into three categories: discrete white spots, which are believed to be associated with undissolved material which has fallen in from the shelf, crown, or torus regions; dendritic white spots, usually associated with dendrite clusters having fallen from the electrode; and solidification white spots, believed to be caused by local perturbations in the solidifications conditions. Characteristics and proposed formation mechanisms of white spots are reviewed and discussed in context of physical processes occurring during VAR, such as fluid flow and arc behavior. Where possible, their formation mechanisms will be considered with respect to specific operating parameters. In order to more fully understand the formation of solidification white spots, an experimental program has been begun to characterize the solidification stability of Alloy 718 and variants with respect to changes in growth rate and thermal environment. A description of the experimental program and preliminary results are included.
Analysis of anelastic flow and numerical treatment via finite elements
In this report, we reconsider the various approximations made to the full equations of motion and energy transport for treating low-speed flows with significant temperature induced property variations. This entails assessment of the development of so-called anelastic for low-Mach number flows outside the range of validity of the Boussinesq equations. An integral part of this assessment is the development of a finite element-based numerical scheme for obtaining approximate numerical solutions to this class of problems. Several formulations were attempted and are compared.
Impact testing of the H1224A shipping/storage container
H1224A weapons containers have been used for years by the Department of Energy and Department of Defense to transport and store W78 warhead midsections. Although designed to protect these midsections only in low-energy handling drop and impact accidents, a recent transportation risk assessment effort has identified a need to evaluate the container`s ability to protect weapons in higher-energy environments. Four impact tests were performed on H1224A containers with W78 Mod 6c mass mockup midsections inside, onto an essentially unyielding target. Dynamic acceleration and strain levels were recorded during the side-on and end-on impacts, each at 12.2 m/s (40 ft/s) and 38.1 m/s (125 ft/s). Measured peak accelerations experienced by the midsections during lower velocity impacts ranged from 250 to 600 Gs for the end-on impact and 350 to 600 Gs for the side-on impact. Measured peak accelerations of the midsections during the higher velocity impacts ranged from 3,000 to 10,000 Gs for the end-on impact and 8,000 to 10,000 Gs for the side-on impact. Deformations in the H1224A container ranged from minimal to severe buckling and weld tearing. At higher impact velocities, the H1224A container may not provide significant energy absorption for the re-entry vehicle midsection but can provide some confinement of potentially damaged components.
Modified Noise Power Ratio testing of high resolution digitizers
A broadband, full signal range, side-by-side (tandem) test method for estimating the internal noise performance of high resolution digitizers is described and illustrated. The technique involves a re-definition of the traditional Noise Power Ratio (NPR) test, a change that not only makes this test applicable to higher resolution systems than was previously practical, but also enhances its value and flexibility. Since coherence analysis is the basis of this new definition, and since the application of coherence procedures to high resolution data poses several problems, this report discusses these problems and their resolution.
A three-dimensional fast solver for arbitrary vorton distributions
A method which is capable of an efficient calculation of the three-dimensional flow field produced by a large system of vortons (discretized regions of vorticity) is presented in this report. The system of vortons can, in turn, be used to model body surfaces, container boundaries, free-surfaces, plumes, jets, and wakes in unsteady three-dimensional flow fields. This method takes advantage of multipole and local series expansions which enables one to make calculations for interactions between groups of vortons which are in well-separated spatial domains rather than having to consider interactions between every pair of vortons. In this work, series expansions for the vector potential of the vorton system are obtained. From such expansions, the three components of velocity can be obtained explicitly. A Fortran computer code FAST3D has been written to calculate the vector potential and the velocity components at selected points in the flow field. In this code, the evaluation points do not have to coincide with the location of the vortons themselves. Test cases have been run to benchmark the truncation errors and CPU time savings associated with the method. Non-dimensional truncation errors for the magnitudes of the vector potential and velocity fields are on the order of 10{sup {minus}4}and 10{sup {minus}3} respectively. Single precision accuracy produces errors in these quantities of up to 10{sup {minus}5}. For less than 1,000 to 2,000 vortons in the field, there is virtually no CPU time savings with the fast solver. For 100,000 vortons in the flow, the fast solver obtains solutions in 1 % to 10% of the time required for the direct solution technique depending upon the configuration.
ETPRE User`s Manual Version 3.00
Roginski, R.J.
ETPRE is a preprocessor for the Event Progression Analysis Code EVNTRE. It reads an input file of event definitions and writes the lengthy EVNTRE code input files. ETPRE`s advantage is that it eliminates the error-prone task of manually creating or revising these files since their formats are quite elaborate. The user-friendly format of ETPRE differs from the EVNTRE code format in that questions, branch references, and other event tree components are defined symbolically instead of numerically. When ETPRE is executed, these symbols are converted to their numeric equivalents and written to the output files using formats defined in the EVNTRE Reference Manual. Revisions to event tree models are simplified by allowing the user to edit the symbolic format and rerun the preprocessor, since questions, branch references, and other symbols are automatically resequenced to their new values with each execution. ETPRE and EVNTRE have both been incorporated into the SETAC event tree analysis package.
Radiant heat testing of the H1224A shipping/storage container
H1224A weapons containers have been used for years by the Departments of Energy and Defense to transport and store W78 warhead midsections. Although designed to protect the midsections only from low-energy impacts, a recent transportation risk assessment effort has identified a need to evaluate the container`s ability to protect weapons in more severe accident environments. Four radiant heat tests were performed: two each on an H1224A container (with a Mk12a Mod 6c mass mock-up midsection inside) and two on a low-cost simulated H1224A container (with a hollow Mk12 aeroshell midsections inside). For each unit tested, temperatures were recorded at numerous points throughout the container and midsection during a 4-hour 121{degrees}C (250{degrees}F) and 30-minute 1010{degrees}C (1850{degrees}F) radiant environment. Measured peak temperatures experienced by the inner walls of the midsections as a result of exposure to the high-temperature radiant environment ranged from 650{degrees} C to 980{degrees} C (1200{degrees} F to 1800{degrees}F) for the H1224A container and 770 {degrees} to 990 {degrees}C (1420{degrees} F to 1810{degrees}F) for the simulated container. The majority of both containers were completely destroyed during the high-temperature test. Temperature profiles will be used to benchmark analytical models and predict warhead midsection temperatures over a wide range of the thermal accident conditions.
Large scale obscuration and related climate effects open literature bibliography
Large scale obscuration and related climate effects of nuclear detonations first became a matter of concern in connection with the so-called ``Nuclear Winter Controversy`` in the early 1980`s. Since then, the world has changed. Nevertheless, concern remains about the atmospheric effects of nuclear detonations, but the source of concern has shifted. Now it focuses less on global, and more on regional effects and their resulting impacts on the performance of electro-optical and other defense-related systems. This bibliography reflects the modified interest.
Large Scale Obscuration and Related Climate Effects Workshop: Proceedings
A Workshop on Large Scale Obsurcation and Related Climate Effects was held 29--31 January, 1992, in Albuquerque, New Mexico. The objectives of the workshop were: to determine through the use of expert judgement the current state of understanding of regional and global obscuration and related climate effects associated with nuclear weapons detonations; to estimate how large the uncertainties are in the parameters associated with these phenomena (given specific scenarios); to evaluate the impact of these uncertainties on obscuration predictions; and to develop an approach for the prioritization of further work on newly-available data sets to reduce the uncertainties. The workshop consisted of formal presentations by the 35 participants, and subsequent topical working sessions on: the source term; aerosol optical properties; atmospheric processes; and electro-optical systems performance and climatic impacts. Summaries of the conclusions reached in the working sessions are presented in the body of the report. Copies of the transparencies shown as part of each formal presentation are contained in the appendices (microfiche).
Primary Standards Laboratory report, 2nd half 1993
Levy, Walbert G.T.
The Primary Standards Laboratory (PSL) operates a system-wide primary standards and calibration program for the US Department of Energy, Albuquerque Field Office (DOE/AL). The PSL mission is as follows: to develop and maintain primary standards; to calibrate electrical, physical, and radiation reference standards for customer laboratories (DOE/AL nuclear weapon contractors); to conduct the technical surveys and measurement audits of these laboratories; and to recommend and implement system-wide improvements. This report summarizes activities of the PSL for the second half of 1993 and provides information pertinent to the operation of the DOE/AL Standards and Calibration Program. Specific areas covered include development projects, improvement projects, calibration and special measurements, surveys and audits, customer service, and significant events. Appendixes include certifications and reports;; a discussion about commercial calibration laboratories; PSL memoranda (PSLM); test numbers from the National Institute of Standards and Technology (NIST), formerly the National Bureau of Standards (NBS); and DOE/PSL memoranda on the Standards and Calibration Program with emphasis on traceability of PSL calibrations.
In situ evaporation of lithium for LEVIS ion source
Gerber, B.
This report describes the In Situ evaporation of pure lithium on the anode of PBFA II which then can be evaporated and ionized by Laser Evaporation and Ionization Source (LEVIS). Included in this report are the necessary calculations, light laboratory experiments and details of the hardware for PBFA II. This report gives all the details of In Situ evaporation for PBFA II so when a decision is made to provide an active lithium source for PBFA II, it can be fielded in a minimum of time.
Integrated environmentally compatible soldering technologies. Final report
Hosking, F.M.; Frear, D.R.; Iman, R.L.; Keicher, D.M.; Lopez, E.P.; Peebles, H.C.; Sorensen, N.R.; Vianco, P.T.
Chemical fluxes are typically used during conventional electronic soldering to enhance solder wettability. Most fluxes contain very reactive, hazardous constituents that require special storage and handling. Corrosive flux residues that remain on soldered parts can severely degrade product reliability. The residues are removed with chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC), or other hazardous solvents that contribute to ozone depletion, release volatile organic compounds into the atmosphere, or add to the solvent waste stream. Alternative materials and processes that offer the potential for the reduction or elimination of cleaning are being developed to address these environmental issues. Timing of the effort is critical, since the targeted chemicals will soon be heavily taxed or banned. DOE`s Office of Environmental Restoration and Waste Management (DOE/EM) has supported Sandia National Laboratories` Environmentally Conscious Manufacturing Integrated Demonstration (ECMID). Part of the ECM program involves the integration of several environmentally compatible soldering technologies for assembling electronics devices. Fluxless or {open_quotes}low-residue/no clean{close_quotes} soldering technologies (conventional and ablative laser processing, controlled atmospheres, ultrasonic tinning, protective coatings, and environmentally compatible fluxes) have been demonstrated at Sandia (SNL/NM), the University of California at Berkeley, and Allied Signal Aerospace-Kansas City Division (AS-KCD). The university demonstrations were directed under the guidance of Sandia staff. Results of the FY93 Soldering ID are presented in this report.
An annotated summary of the Information Model Design Procedure (IMDP)
Becker, S.D.
This presentation documents the essential elements of the IMDP as applied at Sandia National Laboratories/New Mexico. The IMDP is an adaptation of the Natural-Language Information Analysis Methodology (NIAM) of G. M. Nijssen. The underlying purpose of both of these methodologies is to provide a formal, reproducible, and verifiable approach to specifying the information requirements of an information system. The IMDP spans the specification process from initial scoping; through verbalization of problem-domain facts, specification of constraints, and subtype analysis; and finally to application of a formal algorithm for developing a fifth-normal-form relational database design.
Experiments to investigate direct containment heating phenomena with scaled models of the Zion Nuclear Power Plant in the Surtsey Test Facility
The Surtsey Facility at Sandia National Laboratories (SNL) is used to perform scaled experiments that simulate hypothetical high-pressure melt ejection (HPME) accidents in a nuclear power plant (NPP). These experiments are designed to investigate the effect of specific phenomena associated with direct containment heating (DCH) on the containment load, such as the effect of physical scale, prototypic subcompartment structures, water in the cavity, and hydrogen generation and combustion. In the Integral Effects Test (IET) series, 1:10 linear scale models of the Zion NPP structures were constructed in the Surtsey vessel. The RPV was modeled with a steel pressure vessel that had a hemispherical bottom head, which had a 4-cm hole in the bottom head that simulated the final ablated hole that would be formed by ejection of an instrument guide tube in a severe NPP accident. Iron/alumina/chromium thermite was used to simulate molten corium that would accumulate on the bottom head of an actual RPV. The chemically reactive melt simulant was ejected by high-pressure steam from the RPV model into the scaled reactor cavity. Debris was then entrained through the instrument tunnel into the subcompartment structures and the upper dome of the simulated reactor containment building. The results of the IET experiments are given in this report.
Characterization of latent-heat-storage salts for use in rechargeable sodium/sulfur batteries
Armijo, J.R.
The properties of candidate phase-change materials for use in a thermal management system for sodium/sulfur batteries were characterized. The experimental procedures used are presented along with a comprehensive description of the results. The principal properties were measured with differential scanning calorimetry and included heat-of-fusion and melting-point temperature. In addition, relevant thermal properties and compatibility with containment materials were studied. Recently, one of the salts studied was successfully incorporated into a prototype sodium/sulfur battery.
PROJECT 56 in retrospect
Jones, R.D.; Compton, M.L.; Hollister, J.F.
Nuclear weapons are designed to ensure that an accidental explosion will not result in a significant nuclear yield. In 1956 and again in 1960, a series of tests was conducted in the Coyote Test Field on Kirtland AFB to study the scattering of nuclear material from such an event. Simulated nuclear devices with depleted uranium were used in the tests.
Safety analysis of optically ignited explosive and pyrotechnic devices
The future of optical ordnance depends on the acceptance, validation and verification of the stated safety enhancement claims of optical ordnance over existing electrical explosive devices (EED`s). Sandia has been pursuing the development of optical ordnance, with the primary motivation of this effort being the enhancement of explosive safety by specifically reducing the potential of premature detonation that can occur with low energy electrically ignited explosive devices. By using semiconductor laser diodes for igniting these devices, safety improvements can be made without being detrimental to current system concerns since the inputs required for these devices are similar to electrical systems. Laser Diode Ignition (LDI) of the energetic material provides the opportunity to remove the bridgewire and electrically conductive pins from the charge cavity, creating a Faraday cage and thus isolating the explosive or pyrotechnic materials from stray electrical ignition sources. Recent results from our continued study of safety enhancements are presented. The areas of investigation which are presented include: (1) unintended optical source analysis, specifically lightning insensitivity, (2) electromagnetic radiation (EMR) and electrostatic discharge (ESD) insensitivity analysis, and (3) powder safety.
MELCOR 1.8.2 assessment: The MP-1 and MP-2 late phase melt progression experiments
MELCOR is a fully integrated, engineering-level computer code being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRs. As a part of an ongoing assessment program, MELCOR has been used to model the MP-1 and MP-2 experiments, which provided data for late-phase melt progression in PWR geometries. Core temperature predicted by MELCOR were within 250--500 K of measured data in both MP-1 and MP-2. Relocation in the debris bed and metallic crust regions of MP-2 was predicted accurately compared to PIE data. Temperature gradients in lower portions of the test bundle were not predicted well in both MP-1 and MP-2, due to the lack of modeling of the heat transfer path to the cooling jacket in those portions of the test bundles. Fifteen sensitivity studies were run on various core (COR), control volume hydrodynamics (CVH) and heat structures (HS) package parameters. No unexpected sensitivities were found, and in particular there were no sensitivities to reduced time step, finer nodalization or to computer platform. Calculations performed by the DEBRIS and TAC2D codes for MP-1 and MP-2 showed better agreement with measured data than those performed by MELCOR. This was expected, through, due to the fully 2-dimensional modeling used in the other codes.
Phase-locked arrays of vertical-cavity surface-emitting lasers
Vertical Cavity Surface-Emitting Lasers (VCSELs) are of increasing interest to the photonics community because of their surface-emitting structure, simple fabrication and packaging, wafer-level testability and potential for low cost. Scaling VCSELs to higher power outputs requires increasing the device area, which leads to transverse mode control difficulties if devices become larger than 10-15 microns. One approach to increasing the device size while maintaining a well controlled transverse mode profile is to form coupled or phase-locked, two-dimensional arrays of VCSELs that are individually single-transverse mode. The authors have fabricated and characterized both photopumped and electrically injected two-dimensional VCSEL arrays with apertures over 100 microns wide. Their work has led to an increased understanding of these devices and they have developed new types of devices, including hybrid semiconductor/dielectric mirror VCSEL arrays, VCSEL arrays with etched trench, self-aligned, gold grid contacts and arrays with integrated phase-shifters to correct the far-field pattern.
Minutes of the third annual workshop on chromate replacements in light metal finishing
Goal of the workshop was to bring together coating researchers, developers, and users from a variety of industries (defense, automotive, aerospace, packaging) to discuss new coating ideas from the perspective not only of end user, but also the coating supplier, developer, and researcher. The following are included in this document: workshop agenda, list of attendees, summary of feedback, workshop notes compiled by organizers, summaries of Sessions II and IV by session moderators, and vugraphs and abstracts.
Neural network based time-optimal control of a magnetically levitated precision positioning system
This paper describes an application of artificial neural networks to the problem of time-optimal control of a magnetically levitated platen. The system of interest is a candidate technology for advanced photolithography machines used in the manufacturing of integrated circuits. The nonlinearities associated with magnetic levitation actuators preclude the direct application of classical timeoptimal control methodologies for determining optimal rest-to-rest maneuver strategies. Instead, a computer simulation of the platen system is manipulated to provide a training set for an artificial neural network. The trained network provides optima switching times for conducting one dimensional rest-to-rest maneuvers of the platen that incorporate the full nonlinear effects of the magnetic levitation actuators. Sample problems illustrate the effectiveness of the neural network based control as compared to traditional proportional-derivative control.
The Assessment of Future Human Actions at Radioactive Waste Disposal Sites: An international perspective
Anderson, D.R.; Galson, D.A.; Patera, E.S.
For some deep geological disposal systems, the level of confinement provided by the natural and engineered barriers is considered to be so high that the greatest long-term risks associated with waste disposal may arise from the possibility of future human actions breaching the natural and/or engineered barrier systems. Following a Workshop in 1989, the OECD Nuclear Energy Agency established a Working Group on Assessment of Future Human Actions (FHA) a Radioactive Waste Disposal Sites. This Group met four times in the period 1991--1993, and has extensively reviewed approaches to and experience of incorporating the effects of FHA into long-term performance assessments (PAs). The Working Group`s report reviews the main issues concerning the treatment of FHA, presents a general framework for the quantitative, consideration of FHA in radioactive waste disposal programmes, and discusses means in reduce the risks associated with FHA. The Working Group concluded that FHA must be considered in PAs, although FHA where the actors were cognizant of the risks could be ignored. Credit can be taken for no more than several hundred years of active site control; additional efforts should therefore be taken to reduce the risks associated with FHA. International agreement on principles for the construction of FHA scenarios would build confidence, as would further discussion concerning regulatory policies for judging risks associated with FHA.
Large-scale testing of in-vessel debris cooling through external flooding of the reactor pressure vessel in the CYBL facility
The possibility of achieving in-vessel core retention by flooding the reactor cavity, or the ``flooded cavity``, is an accident management concept currently under consideration for advanced light water reactors (ALWR), as well as for existing light water reactors (LWR). The CYBL (CYlindrical BoiLing) facility is a facility specifically designed to perform large-scale confirmatory testing of the flooded cavity concept. CYBL has a tank-within-a-tank design; the inner 3.7 m diameter tank simulates the reactor vessel, and the outer tank simulates the reactor cavity. The energy deposition on the bottom head is simulated with an array of radiant heaters. The array can deliver a tailored heat flux distribution corresponding to that resulting from core melt convection. The present paper provides a detailed description of the capabilities of the facility, as well as results of recent experiments with heat flux in the range of interest to those required for in-vessel retention in typical ALWRs. The paper concludes with a discussion of other experiments for the flooded cavity applications.
Probability mapping of contaminants
Exhaustive characterization of a contaminated site is a physical and practical impossibility. Descriptions of the nature, extent, and level of contamination, as well as decisions regarding proposed remediation activities, must be made in a state of uncertainty based upon limited physical sampling. The probability mapping approach illustrated in this paper appears to offer site operators a reasonable, quantitative methodology for many environmental remediation decisions and allows evaluation of the risk associated with those decisions. For example, output from this approach can be used in quantitative, cost-based decision models for evaluating possible site characterization and/or remediation plans, resulting in selection of the risk-adjusted, least-cost alternative. The methodology is completely general, and the techniques are applicable to a wide variety of environmental restoration projects. The probability-mapping approach is illustrated by application to a contaminated site at the former DOE Feed Materials Production Center near Fernald, Ohio. Soil geochemical data, collected as part of the Uranium-in-Soils Integrated Demonstration Project, have been used to construct a number of geostatistical simulations of potential contamination for parcels approximately the size of a selective remediation unit (the 3-m width of a bulldozer blade). Each such simulation accurately reflects the actual measured sample values, and reproduces the univariate statistics and spatial character of the extant data. Post-processing of a large number of these equally likely statistically similar images produces maps directly showing the probability of exceeding specified levels of contamination (potential clean-up or personnel-hazard thresholds).
Dynamic failure in brittle solids
Grady, D.E.
Failure of brittle solids within the extremes of the shock loading environment is not well understood. Recent shock-wave data on compression shear failure and tensile spall failure for selected high-strength ceramics are presented and used to examine the mechanisms of dynamic failure. Energy-based theories are used to bound the measured strength properties. A new concept of failure waves in brittle solids is explored in light of the kinetic processes of high-rate fracture. Classical failure criteria are compared with the present base of dynamic strength data on ceramics.
The Surveillance And Reconnaissance Ground Equipment (SARGE), real robots for real soldiers
Pletta, J.B.
The Joint Program Office for Unmanned Ground Vehicles and Sandia National Laboratories are developing the Surveillance And Reconnaissance Ground Equipment (SARGE) robot. The SARGE system is a second generation refinement of Sandia`s Dixie robot. A comparison of Dixie`s actual performance and the expected SARGE performance characteristics will be given. The SARGE design philosophy embraces proven technology, low power consumption, and modular sensor packages designed to meet specific mission needs. A major aspect of the SARGE program is obtaining user acceptance through ownership of the prototype hardware. A total of ten systems are being fabricated with at least eight being given to infantry battalions for their use in day to day operations. The SARGE robot is a prototype system that is not intended to meet all the needs of the infantry soldier but will provide a reliable platform which will enable the soldier to determine first hand the required capabilities for future unmanned ground vehicles on the battlefield.
Predicted optical performance of the high-altitude balloon experiment (HABE) telescope in an adverse thermal environment
The High-Altitude Balloon Experiment (HABE) telescope was designed to operate at an ambient temperature of {minus}55 C and an altitude of 26 km, using a precooled primary mirror. Although at this altitude the air density is only 1.4 percent of the value at sea level, the temperature gradients within the telescope are high enough to deform the optical wavefront. This problem is considerably lessened by precooling the primary mirror to {minus}35 C. This paper describes the application of several codes to determine the range of wavefront deformation during a mission.
A Highly Agile Ground Assessment Robot (HAGAR) for military battlefield and support missions
A mobile robotic vehicle with potential for use in military field applications is described. Based on a Sandia design intended for use in exploration of the Lunar surface, the Highly Agile Ground Assessment Robot (HAGAR) is a four wheeled all-wheel-drive dual-body vehicle. A uniquely simple method of chassis articulation is employed which allows all four wheels to remain in contact with the ground, even while operating in very rough terrain and climbing over obstacles as large as a wheel diameter. Skid steering and modular construction are used to produce a simple, rugged, lightweight, highly agile mobility chassis with a reduction in the number of parts required when compared to conventional vehicle designs for military battlefield and support missions. The design configuration, mobility parameters, potential mission configurations, and performance of existing and proposed HAGAR prototypes are discussed.
Overview of Sandia National Laboratories and Antenna Development Department
Sandia is a multiprogram R & D laboratory. It has responsibilities in the following areas: (1) defense programs; (2) energy and environment; and (3) work for others (DOD, NSA, etc.). In 1989, the National Competitiveness Technology Transfer Act added another responsibility -- contributions to industrial competitiveness. Sandia has two major laboratory locations, New Mexico and California, and two flight testing locations, Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii. The last part of this talk was dedicated to antenna research at Sandia.
Continuum fluorescence of Cu in NbTi/Cu composite wires
Continuum fluorescence across interfaces separating regions of differing composition is difficult to calculate. This paper illustrates a case of continuum fluorescence in analysis of superconducting NbTi/Cu composite wire which could lead to erroneous compositions due to Cu fluorescence by continuum x rays generated in an NbTi alloy. An approximate treatment of the continuum fluorescence is presented. 3 figs, 4 refs.
Robotics Technology Development Program Cross Cutting and Advanced Technology
Need-based cross cutting technology is being developed which is broadly applicable to the clean up of hazardous and radioactive waste within the US Department of Energy`s complex. Highly modular, reusable technologies which plug into integrated system architectures to meet specific robotic needs result from this research. In addition, advanced technologies which significantly extend current capabilities such as automated planning and sensor-based control in unstructured environments for remote system operation are also being developed and rapidly integrated into operating systems.
Aerospace nuclear safety: An introduction and historical overview
Lee, J.H.; Buden, D.
This paper provides an introduction and overview on the topical area of aerospace nuclear safety. Emphasis is on the history of the use of nuclear power sources in space, operational experience with these nuclear sources, a review of previous accidents associated with both U.S. and Russian launches, and the safety issues associated with the entire life cycle of space reactors. There are several potential missions to include near earth orbit, orbit-raising, lunar bases, and propulsion to such solar system locations as Mars, which are suitable for the use of space reactors. The process by which approval is obtained to launch these nuclear materials to space is also presented as well as the role of nuclear safety policy and requirements in a space program using nuclear power sources. Important differences in safety concerns for the Radioisotope Thermoelectric Generators (RTGs) now used, and space reactors are presented. The role and purpose of independent safety evaluation and assessment in ensuring safe launch and operation is also discussed. In summary, this paper provides the requisite framework in this topical area for the remaining papers of this session.
Status of photovoltaic concentrator modules and systems
Several leading line- and point-focus photovoltaic concentrator system development programs are reviewed, including those by ENTECH, SEA Corporation, AMONIX, and Alpha Solarco. Concentrating collectors and trackers are gaining maturity and reaching product status as designs are made more manufacturable and reliable. Utilities are starting to take notice of this emerging technology, and several privately-funded utility installations are underway. Several advantages are offered by concentrators, including low system and capital cost and rapid production ramp-up. These are discussed along with issues generally raised concerning concentrator technology.
Two-axis hydraulic joint for high speed, heavy lift robotic operations
Vaughn, M.R.; Robinett, R.D.; Phelan, J.R.; Vanzuiden, D.M.
A hydraulically driven universal joint was developed for a heavy lift, high speed nuclear waste remediation application. Each axis is driven by a simple hydraulic cylinder controlled by a jet pipe servovalve. Servovalve behavior is controlled by a force feedback control system, which damps the hydraulic resonance. A prototype single joint robot was built and tested. A two joint robot is under construction.
Remote use of distributed robotics resources to enhance technology development and insertion
This paper describes Virtual Collaborative Environments (VCEs), an information architecture that enables remote sharing of mechatronic (intelligent electrochemical devices) resources. This architecture will leverage the proposed National Information Infrastructure (NII) or Information Highway to share valuable resources and reduce product-to-market cycles. Benefits of sharing mechatronic resources with VCEs are explored. An existing prototype VCE is described and experimental and illustrative results from using the prototype VCE system are discussed.
Using voice input and audio feedback to enhance the reality of a virtual experience
Virtual Reality (VR) is a rapidly emerging technology which allows participants to experience a virtual environment through stimulation of the participant`s senses. Intuitive and natural interactions with the virtual world help to create a realistic experience. Typically, a participant is immersed in a virtual environment through the use of a 3-D viewer. Realistic, computer-generated environment models and accurate tracking of a participant`s view are important factors for adding realism to a virtual experience. Stimulating a participant`s sense of sound and providing a natural form of communication for interacting with the virtual world are equally important. This paper discusses the advantages and importance of incorporating voice recognition and audio feedback capabilities into a virtual world experience. Various approaches and levels of complexity are discussed. Examples of the use of voice and sound are presented through the description of a research application developed in the VR laboratory at Sandia National Laboratories.
SERAPHIM: A magnetic propulsion scheme for fast trains
We are attempting to develop and demonstrate a new type of linear synchronous induction motor capable of propelling a vehicle at high speed. The technology, based on a passive guideway containing sequential aluminum plates, was developed in Sandia`s electromagnetic launch program. As such, it was called a ``re-connection gun`` and launched an aluminum plate from between pairs of pancake coils. In the proposed propulsion scheme, the plates are fixed and the coils move. Pairs of closely spaced pancake coils on the vehicle straddle vertically mounted aluminum plates in the roadbed. The current in the coils is turned on when the plate is fully covered, peaks at some optimal time, and decreases to zero before separation. This induces currents in the plate which interact with the coil current to produce repulsive forces. In essence, the pulsed coils push off the edge of the plate because at the high frequency of operation, the current has insufficient time to fully penetrate. Since no embedded flux is required, the efficiency actually increases with speed. This concept has been named SERAPHIM, for SEgmented RAil PHased Induction Motor.
The use of optically triggered, high gain GaAs switches for UWB pulse generation
A high peak power impulse pulser that is controlled with high gain, optically triggered GaAs Photoconductive Semiconductor Switches (PCSS) has been constructed and tested. The system has a short 50 {Omega} line that is charged to 100 kV and discharged through the switch when the switch is triggered with as little as 90 nJ of laser energy. The laser that is used is a small laser diode array whose output is delivered through a fiber to the switch. The current in the system ranges from 1 kA (with one laser) to 1.3 kA (with two) and the pulse widths are 1.9 and 1.4 ns, respectively. The peak power and the energy delivered to the load are 50 MW to 84 MW and 95 NJ to 120 mJ for one or two lasers. The small trigger energy and switch jitter are due to a high gain switching mechanism in GaAs. This experiment also shows a relationship between the rise time of the voltage across the switch and the required trigger energy and switch jitter.
Ion-exchange performance of crystalline silico-titanates for cesium removal from Hanford Tank Waste Simulants
A new class of inorganic ion exchangers, called crystalline silicotitanates (CSTs), has been prepared at Sandia National Laboratories and Texas A&M University. CSTs have been determined to have high selectivity for the adsorption of Cs and Sr, and several other radionuclides from highly alkaline, high-sodium supernate solutions such as those found at Westinghouse Hanford (WHC). An extensive program has been conducted to assess the applicability of CSTs for treating Hanford wastes. Continuous flow, ion-exchange columns are expected to be used to remove Cs and other radionuclides from the Hanford tank supernate. The proposed application for the CST would be Cs removal from highly alkaline salt solutions in a single pass process with interim storage of the Cs loaded CST until the glass vitrification plant is operational. This paper presents test results which address the important chemical, physical, and radiological properties which are expected to be relevant for Hanford radwaste processing. Results indicate that CSTs have a large distribution coefficient (K{sub d}>2000 mL/g in NCAW simulants) for adsorbing ppm concentrations of Cs. These wastes are highly alkaline (>O.6M OH{sup {minus}}) with high sodium (>5M Na{sup +}) concentrations. CSTs exhibit very high K, values (>20,000 mL/g) for Cs in neutral solutions and K, values of >2,000 mL/g in solutions containing 2M HNO{sub 3}. Presented are results from initial experimental efforts that describe the potential performance of the CSTs in laboratory-scale ion-exchange columns. Included are results showing the stability of the CST material in basic solutions and in radiation doses up to 10{sup 9} rads (Si). The status on the commercialization of the CST powder and engineered-form is discussed. Sufficient material for expanded testing and evaluation is expected to become available during 1994.
D-D fusion experiments using fast z pinches
The development of high current (I > 10 MA) drivers provides us with a new tool for the study of neutron-producing plasmas in the thermal regime. The imploded deuterium mass (or collisionality) increases as I{sup 2} and the ability of the driver to heat the plasma to relevant fusion temperatures improves as the power of the driver increases. Additionally, fast (< 100 ns) implosions are more stable to the usual MHD instabilities that plagued the traditional slower implosions. We describe experiments in which deuterium gas puffs or CD{sub 2} fiber arrays were imploded in a fast z-pinch configuration on Sandia`s Saturn facility generating up to 3 {times} 10{sup 12} D-D neutrons. These experiments were designed to explore the physics of neutron-generating plasmas in a z-pinch geometry. Specifically, we intended to produce neutrons from a nearly thermal plasma where the electrons and ions have a nearly Maxwellian distribution. This is to be clearly differentiated from the more usual D-D beam-target neutrons generated in many dense plasma focus (DPF) devices.
Radially combined 30 W, 14-16 GHz amplifier
The paper describes a highly integrated 30 W power amplifier for a Synthetic Aperture Radar, operating in the 14--16 GHz band. The use of a waveguide radial combiner, a microstrip power divider and direct microstrip to waveguide miniaturized ceramic technology, leads to an unusually compact and accessible structure, well suited for commercial production.
Design of a pressure/temperature logging system for geothermal applications
Lysne, P.
Past memory logging tools have provided excellent pressure/temperature data when used in a geothermal environment, and they are easier to maintain and deploy than tools requiring an electric wireline connection to the surface. However, they are deficient since the tool operator is unaware of downhole conditions that could require changes in the logging program. Tools that make ``decisions`` based on preprogrammed scenarios can partially overcome this difficulty, and a suite of such memory tools is under development at Sandia. The first tool, which forms the basis for future instruments, measures pressure and temperature. Design considerations include a minimization of cost while insuring quality data, size compatibility with diamond-cored holes, use in holes to 425{degree}C (800{degree}F), transportability by ordinary passenger air service, and ease of operation. Prototype tools are available for evaluation by the geothermal industry.
Capillary flow solderability test for printed wiring boards
Hosking, F.M.; Yost, F.G.; Hernandez, C.L.; Sackinger, S.J.
This report describes a new technique for evaluating capillary flow solderability on printed circuit boards. The test involves the flow of molten solder from a pad onto different-sized conductor lines. It simulates the spreading dynamics of either plated-through-hole (PTH) or surface mount technology (SMT) soldering. A standard procedure has been developed for the test. Preliminary experiments were conducted and the results demonstrate test feasibility. Test procedures and results are presented in this report.
Determination of influence factors and accident rates for the Armored Tractor/Safe Secure Trailer
Operating environments, such as road type, road location, and time of day, play an important role in the observed accident rates of heavy trucks used in general commerce. These same factors influence the accident rate of the Armored Tractor/Safe Secure Trailer (AT/SST) used by the Department of Energy to transport hazardous cargos within the continental United States. This report discusses the development of accident rate influence factors. These factors, based on heavy trucks used in general commerce, are used to modify the observed overall AT/SST accident rate to account for the different operating environments.
Evaluation of an air drilling cuttings containment system
Drilling at hazardous waste sites for environmental remediation or monitoring requires containment of all drilling fluids and cuttings to protect personnel and the environment. At many sites, air drilling techniques have advantages over other drilling methods, requiring effective filtering and containment of the return air/cuttings stream. A study of. current containment methods indicated improvements could be made in the filtering of radionuclides and volatile organic compounds, and in equipment like alarms, instrumentation or pressure safety features. Sandia National Laboratories, Dept. 61 11 Environmental Drilling Projects Group, initiated this work to address these concerns. A look at the industry showed that asbestos abatement equipment could be adapted for containment and filtration of air drilling returns. An industry manufacturer was selected to build a prototype machine. The machine was leased and put through a six-month testing and evaluation period at Sandia National Laboratories. Various materials were vacuumed and filtered with the machine during this time. In addition, it was used in an actual air drive drilling operation. Results of these tests indicate that the vacuum/filter unit will meet or exceed our drilling requirements. This vacuum/filter unit could be employed at a hazardous waste site or any site where drilling operations require cuttings and air containment.
Integrated Fuel-Coolant Interaction (IFCI 6.0) code. User`s manual
Davis, F.J.; Young, M.F.
The integrated Fuel-Coolant interaction (IFCI) computer code is being developed at Sandia National Laboratories to investigate the fuel-coolant interaction (FCI) problem at large scale using a two-dimensional, four-field hydrodynamic framework and physically based models. IFCI will be capable of treating all major FCI processes in an integrated manner. This document is a product of the effort to generate a stand-alone version of IFCI, IFCI 6.0. The User`s Manual describes in detail the hydrodynamic method and physical models used in IFCI 6.0. Appendix A is an input manual, provided for the creation of working decks.
Micromechanical modeling of advanced materials
Funded as a laboratory-directed research and development (LDRD) project, the work reported here focuses on the development of a computational methodology to determine the dynamic response of heterogeneous solids on the basis of their composition and microstructural morphology. Using the solid dynamics wavecode CTH, material response is simulated on a scale sufficiently fine to explicitly represent the material`s microstructure. Conducting {open_quotes}numerical experiments{close_quotes} on this scale, the authors explore the influence that the microstructure exerts on the material`s overall response. These results are used in the development of constitutive models that take into account the effects of microstructure without explicit representation of its features. Applying this methodology to a glass-reinforced plastic (GRP) composite, the authors examined the influence of various aspects of the composite`s microstructure on its response in a loading regime typical of impact and penetration. As a prerequisite to the microscale modeling effort, they conducted extensive materials testing on the constituents, S-2 glass and epoxy resin (UF-3283), obtaining the first Hugoniot and spall data for these materials. The results of this work are used in the development of constitutive models for GRP materials in transient-dynamics computer wavecodes.
Generic safety documentation model
This document is intended to be a resource for preparers of safety documentation for Sandia National Laboratories, New Mexico facilities. It provides standardized discussions of some topics that are generic to most, if not all, Sandia/NM facilities safety documents. The material provides a ``core`` upon which to develop facility-specific safety documentation. The use of the information in this document will reduce the cost of safety document preparation and improve consistency of information.
Time Projection Compton Spectrometer (TPCS). User`s guide
The Time Projection Compton Spectrometer (TPCS) is a radiation diagnostic designed to determine the time-integrated energy spectrum between 100 keV -- 2 MeV of flash x-ray sources. This guide is intended as a reference for the routine operator of the TPCS. Contents include a brief overview of the principle of operation, detailed component descriptions, detailed assembly and disassembly procedures, guide to routine operations, and troubleshooting flowcharts. Detailed principle of operation, signal analysis and spectrum unfold algorithms are beyond the scope of this guide; however, the guide makes reference to sources containing this information.
The Interstate-40 bridge shaker project
New Mexico State University organized an effort to perform static and dynamic damage-detection tests on the Interstate-40 bridge over the Rio Grande at Albuquerque. The opportunity was available because the 425-ft-long bridge was soon to be replaced. Sandia National Laboratories was asked to provide and operate a shaker that could exert 1000-lb peak amplitude forces for both sinusoidal and random excitations between 2 and 20 Hz. Two Sandia departments collaborated to design and build the shaker, using existing major components connected with Sandia-designed and -fabricated hardware. The shaker was installed and operated successfully for a series of five modal and sinusoidal response tests.
Using benchmarking to minimize common DOE waste streams. Volume 1, Methodology and liquid photographic waste
Levin, V.
Finding innovative ways to reduce waste streams generated at Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. This report examines the usefulness of benchmarking as a waste minimization tool, specifically regarding common waste streams at DOE sites. A team of process experts from a variety of sites, a project leader, and benchmarking consultants completed the project with management support provided by the Waste Minimization Division EM-352. Using a 12-step benchmarking process, the team examined current waste minimization processes for liquid photographic waste used at their sites and used telephone and written questionnaires to find ``best-in-class`` industrv partners willing to share information about their best waste minimization techniques and technologies through a site visit. Eastman Kodak Co., and Johnson Space Center/National Aeronautics and Space Administration (NASA) agreed to be partners. The site visits yielded strategies for source reduction, recycle/recovery of components, regeneration/reuse of solutions, and treatment of residuals, as well as best management practices. An additional benefit of the work was the opportunity for DOE process experts to network and exchange ideas with their peers at similar sites.
Split-C and active messages under SUNMOS on the Intel Paragon
The compute power of the individual nodes of massively parallel systems increases steadily, while network latencies and bandwidth have not improved as quickly. Many researches believe that it is necessary to use explicit message passing in order to get the best possible performance out of these systems. High level parallel languages are shunned out of fear they might compromise performance. In this paper we have a look at one such language called Split-C. It fits into a middle ground between efforts such as High Performance Fortran (HPF) and explicit message passing. HPF tries to hide the underlying architecture from the programmer and let the compiler and the run time system make decision about parallelization, location of data, and the mechanisms used to transfer the data from one node to another. On the other hand, explicit message passing leaves all the decision to the programmer. Split-C allows access to a global address space, but leaves the programmer in control of the location of data, and offers a clear cost model for data access. Split-C is based on Active Messages. We have implemented both under the SUNMOS operating system on the Intel Paragon. We will discuss performance issues of Split-C and make direct comparisons to the Thinking Machines CM-5 implementation. We will also scrutinize Active Messages, discuss their properties and drawbacks, and show that other mechanisms can be used to support Split-C.
Aging, Loss-of-Coolant Accident (LOCA), and high potential testing of damaged cables
Vigil, R.A.; Jacobus, M.J.
Experiments were conducted to assess the effects of high potential testing of cables and to assess the survivability of aged and damaged cables under Loss-of-Coolant Accident (LOCA) conditions. High potential testing at 240 Vdc/mil on undamaged cables suggested that no damage was incurred on the selected virgin cables. During aging and LOCA testing, Okonite ethylene propylene rubber (EPR) cables with a bonded jacket experienced unexpected failures. The failures appear to be primarily related to the level of thermal aging and the presence of a bonded jacket that ages more rapidly than the insulation. For Brand Rex crosslinked polyolefin (XLPO) cables, the results suggest that 7 mils of insulation remaining should give the cables a high probability of surviving accident exposure following aging. The voltage necessary to detect when 7 mils of insulation remain on unaged Brand Rex cables is approximately 35 kVdc. This voltage level would almost certainly be unacceptable to a utility for use as a damage assessment tool. However, additional tests indicated that a 35 kvdc voltage application would not damage virgin Brand Rex cables when tested in water. Although two damaged Rockbestos silicone rubber cables also failed during the accident test, no correlation between failures and level of damage was apparent.
An assessment of research and development leadership in ocean energy technologies
Japan is clearly the leader in ocean energy technologies. The United Kingdom also has had many ocean energy research projects, but unlike Japan, most of the British projects have not progressed from the feasibility study stage to the demonstration stage. Federally funded ocean energy research in the US was stopped because it was perceived the technologies could not compete with conventional sources of fuel. Despite the probable small market for ocean energy technologies, the short sighted viewpoint of the US government regarding funding of these technologies may be harmful to US economic competitiveness. The technologies may have important uses in other applications, such as offshore construction and oil and gas drilling. Discontinuing the research and development of these technologies may cause the US to lose knowledge and miss market opportunities. If the US wishes to maintain its knowledge base and a market presence for ocean energy technologies, it may wish to consider entering into a cooperative agreement with Japan and/or the United Kingdom. Cooperative agreements are beneficial not only for technology transfer but also for cost-sharing.
Evaluation of scanners for C-scan imaging in nondestructive inspection of aircraft
The goal of this project was to produce a document that contains information on the usability and performance of commercially available, fieldable, and portable scanner systems as they apply to aircraft NDI inspections. In particular, the scanners are used to generate images of eddy current, ultrasonic, or bond tester inspection data. The scanner designs include manual scanners, semiautomated scanners, and fully automated scanners. A brief description of the functionality of each scanner type, a sketch, and a fist of the companies that support the particular design are provided. Vendors of each scanner type provided hands-on demonstrations of their equipment on real aircraft samples in the FAA Aging Aircraft Nondestructive Inspection Validation Center (AANC) in Albuquerque, NM. From evaluations recorded during the demonstrations, a matrix of scanner features and factors and ranking of the capabilities and limitations of the design, portability, articulation, performance, usability, and computer hardware/software was constructed to provide a quick reference for comparing the different scanner types. Illustrations of C-scan images obtained during the demonstration are shown.
Production Capability Assurance Program (PCAP) data base support process/procedures and roles/responsibilities
This document presents a set of proposed business process and procedures in support of the Production Capability Assurance Program (PCAP) Data Base. These processes and procedures have been adopted by the DOE Albuquerque Weapon Quality Division. Section 1 presents processes and procedures. The procedures support the PCAP Data Base. These procedures fall into the following three (3) categories: Input, Administrative, and Maintenance. Each process has supporting procedures that clearly define the effort to support the PCAP Data Base. The Input category consists of data receipt, data entry, and entry verification and validation. Data entry is entering data that has been received in either a magnetic or hard copy form. Entry verification and validation communicates results of data entry back to the data source. The Administrative category includes change control, access control, coordination of data base and system errors or problems, and coordination of data base and system enhancements. Access control addresses the issues of granting access to the PCAP data base and access to specific functionality such as: update, delete, and specific report initiation. The Maintenance category includes both hardware and software maintenance, data archival and restoration, and the correction of both major and minor software and system problems. Data archival and restoration consists of backing up of the data base and, if necessary, the loading of the data base from archival media in the event of a system disaster. Section 2 defines the roles and responsibilities associated with the processes/procedures. There are four (4) roles: System Administration, Data Base Administration, System Maintenance, and Data Base Maintenance.
Development and characterization of alloys and powder processing techniques for lead-free solder pastes
Sackinger, S.J.; Karnowsky, M.M.; Yost, F.G.
Abstract not provided.
US-Japan workshop Q-181 on high heat flux components and plasma-surface interactions for next devices: Proceedings
Mcgrath, R.T.
This report contain viewgraphs of papers from the following sessions: plasma facing components issues for future machines; recent PMI results from several tokamaks; high heat flux technology; plasma facing components design and applications; plasma facing component materials and irradiation damage; boundary layer plasma; plasma disruptions; conditioning and tritium; and erosion/redeposition.
A comparison of spent fuel shipping cask response to 10 CFR 71 normal conditions and realistic hot day extremes
An examination of the effect of a realistic (though conservative) hot day environment on the thermal transient behavior of spent fuel shipping casks is made. These results are compared to those that develop under the prescribed normal thermal condition of 10 CFR 71. Of specific concern are the characteristics of propagating thermal waves, which are set up by diurnal variations of temperature and insolation in the outdoor environment. In order to arrive at a realistic approximation of these variations on a conservative hot day, actual temperature and insolation measurements have been obtained from the National Climatic Data Center (NCDC) for representatively hot and high heat flux days. Thus, the use of authentic meteorological data ensures the realistic approach sought. Further supporting the desired realism of the modeling effort is the use of realistic cask configurations in which multiple laminations of structural, shielding, and other materials are expected to attenuate the propagating thermal waves. The completed analysis revealed that the majority of wall temperatures, for a wide variety of spent fuel shipping cask configurations, fall well below those predicted by enforcement of the regulatory environmental conditions of 10 CFR 71. It was found that maximum temperatures at the cask surface occasionally lie above temperatures predicted under the prescribed regulatory conditions. However, the temperature differences are small enough that the normal conservative assumptions that are made in the course of typical cask evaluations should correct for any potential violations. The analysis demonstrates that diurnal temperature variations that penetrate the cask wall all have maxima substantially less than the corresponding regulatory solutions. Therefore it is certain that vital cask components and the spent fuel itself will not exceed the temperatures calculated by use of the conditions of 10 CFR 71.
Public perspectives of nuclear weapons in the post-cold war environment
Jenkins-Smith, H.C.; Herron, K.G.; Barke, R.P.
This report summarizes the findings of a nationwide survey of public perceptions of nuclear weapons in the post-cold war environment. Participants included 1,301 members of the general public, 1,155 randomly selected members of the Union of Concerned Scientists, and 1,226 employees randomly selected from the technical staffs of four DOE national laboratories. A majority of respondents from all three samples perceived the post-cold war security environment to pose increased likelihood of nuclear war, nuclear proliferation, and nuclear terrorism. Public perceptions of nuclear weapons threats, risks, utilities, and benefits were found to systematically affect nuclear weapons policy preferences in predictable ways. Highly significant relationships were also found between public trust and nuclear weapons policy preferences. As public trust and official government information about nuclear weapons increased, perceptions of nuclear weapons management risks decreased and perceptions of nuclear weapons utilities and benefits increased. A majority of respondents favored decreasing funding for: (1) developing and testing new nuclear weapons; (2) maintaining existing nuclear weapons, and (3) maintaining the ability to develop and improve nuclear weapons. Substantial support was found among all three groups for increasing funding for: (1) enhancing nuclear weapons safety; (2) training nuclear weapons personnel; (3) preventing nuclear proliferation; and (4) preventing nuclear terrorism. Most respondents considered nuclear weapons to be a persistent feature of the post-cold war security environment.
Solar Electric Generating System II finite element analysis
On June 2, 1992, Landers` earthquake struck the Solar Electric Generating System II, located in Daggett, California. The 30 megawatt power station, operated by the Daggett Leasing Corporation (DLC), suffered substantial damage due to structural failures in the solar farm. These failures consisted of the separation of sliding joints supporting a distribution of parabolic glass mirrors. At separation, the mirrors fell to the ground and broke. It was the desire of the DLC and the Solar Thermal Design Assistance Center (STDAC) of Sandia National Laboratories (SNL) and to redesign these joints so that, in the event of future quakes, costly breakage will be avoided. To accomplish this task, drawings of collector components were developed by the STDAC, from which a detailed finite element computer model of a solar collector was produced. This nonlinear dynamic model, which consisted of over 8,560 degrees of freedom, underwent model reduction to form a low order nonlinear dynamic model containing only 40 degrees of freedom. This model was then used as a design tool to estimate joint dynamics. Using this design tool, joint configurations were modified, and an acceptable joint redesign determined. The results of this analysis showed that the implementation of metal stops welded to support shafts for the purpose of preventing joint separation is a suitable joint redesign. Moreover, it was found that, for quakes of Landers` magnitude, mirror breakage due to enhanced vibration in the trough assembly is unlikely.
Monitoring solar-thermal systems: An outline of methods and procedures
Rosenthal, A.
This manual discusses the technical issues associated with monitoring solar-thermal systems. It discusses some successful monitoring programs that have been implemented in the past. It gives the rationale for selecting a program of monitoring and gives guidelines for the design of new programs. In this report, solar thermal monitoring systems are classified into three levels. For each level, the report discusses the kinds of information obtained by monitoring, the effort needed to support the monitoring program, the hardware required, and the costs involved. Ultimately, all monitoring programs share one common requirement: the collection of accurate data that characterize some aspect or aspects of the system under study. This report addresses most of the issues involved with monitoring solar thermal systems. It does not address such topics as design fundamentals of thermal systems or the relative merits of the many different technologies employed for collection of solar energy.
Time-of-flight detector for heavy ion backscattering spectrometry
This report describes the results of a two-year laboratory directed research and development project to explore advanced concepts in Heavy Ion Backscattering Spectrometry (HIBS), undertaken with the goal of extending the sensitivity of this relatively new technique to levels unattainable by any other existing trace element surface analysis. Improvements in sensitivity are required for the application of HIBS to contamination control in the microelectronics industry. Tools with sensitivity approaching 10{sup 8} atoms/cm{sup 2} are expected to be essential for enabling advanced IC production by the year 2000. During the project the authors developed a new analysis chamber with channeling goniometer and a prototype time-of-flight detector with a demonstrated sensitivity of {approximately} 5 {times} 10{sup 8} atoms/cm{sup 2} for Au on Si and {approximately} 5 {times} 10{sup 10} for Fe, and sufficient mass resolution to separate contributions from Fe and Cu.
Second performance assessment iteration of the Greater Confinement Disposal facility at the Nevada Test Site
The Greater Confinement Disposal (GCD) facility was established in Area 5 at the Nevada Test Site for containment of waste inappropriate for shallow land burial. Some transuranic (TRU) waste has been disposed of at the GCD facility, and compliance of this disposal system with EPA regulation 40 CFR 191 must be evaluated. We have adopted an iterative approach in which performance assessment results guide site data collection, which in turn influences the parameters and models used in performance assessment. The first iteration was based upon readily available data, and indicated that the GCD facility would likely comply with 40 CFR 191 and that the downward flux of water through the vadose zone (recharge) had a major influence on the results. Very large recharge rates, such as might occur under a cooler, wetter climate, could result in noncompliance. A project was initiated to study recharge in Area 5 by use of three environmental tracers. The recharge rate is so small that the nearest groundwater aquifer will not be contaminated in less than 10,000 years. Thus upward liquid diffusion of radionuclides remained as the sole release pathway. This second assessment iteration refined the upward pathway models and updated the parameter distributions based upon new site information. A new plant uptake model was introduced to the upward diffusion pathway; adsorption and erosion were also incorporated into the model. Several modifications were also made to the gas phase radon transport model. Plutonium solubility and sorption coefficient distributions were changed based upon new information, and on-site measurements were used to update the moisture content distributions. The results of the assessment using these models indicate that the GCD facility is likely to comply with all sections of 40 CFR 191 under undisturbed conditions.
Acronyms, initialisms, and abbreviations: Fourth Revision
Tolman, B.J.
This document lists acronyms used in technical writing. The immense list is supplemented by an appendix containing chemical elements, classified information access, common abbreviations used for functions, conversion factors for selected SI units, a flowcharting template, greek alphabet, metrix terminology, proofreader`s marks, signs and symbols, and state abbreviations.
A capillary flow test for printed wiring boards
No abstract available.
Partnering with Sandia National Laboratories through alliances or consortia
Winchell, B.M.
To better facilitate working with industry, groups of industrial participants, and partners in alliances or consortia, Sandia National laboratories presents information helpful to those outside groups as to the forms of arrangements that may be used to better facilitate partnering relationships between Sandia National Laboratories and consortia or alliances of outside parties. It is expected that these alliances and consortia will include both large and small for-profit industrial concerns, as well as not-for-profit entities such as universities, institutes, other research facilities, and other nonprofit institutions or consortia containing institutions. The intent of this report is to provide such outside groups with information that will facilitate rapid interactions with Sandia National Laboratories through some of these forms of business which will be discussed in this report. These are not the only approaches to facilitating business interactions with Sandia National Laboratories and it is not intended that this report be legal advice or required approaches to doing business with Sandia National Laboratories. The intent of this report is merely to suggest ways in which Sandia National Laboratories can work with outside parties in the most expeditious manner.
Constraining local 3-D models of the saturated-zone, Yucca Mountain, Nevada
A qualitative three-dimensional analysis of the saturated zone flow system was performed for a 8 km {times} 8 km region including the potential Yucca Mountain repository site. Certain recognized geologic features of unknown hydraulic properties were introduced to assess the general response of the flow field to these features. Two of these features, the Solitario Canyon fault and the proposed fault in Drill Hole Wash, appear to constrain flow and allow calibration.
The effect of sliding velocity on the mechanical response of an artificial joint in Topopah Spring Member tuff; Yucca Mountain Site Characterization Project
A smooth artificial joint in Topopah Spring Member tuff was sheared at constant normal stress at velocities from 0 to 100 {mu}m/s to determine the velocity-dependence of shear strength. Two different initial conditions were used: (1) unprimed -- the joint had been shear stress-free since last application of normal stress, and before renewed shear loading; and (2) primed -- the joint had undergone a slip history after application of normal stress, but before the current shear loading. Observed steady-state rate effects were found to be about 3 times lager than for some other silicate rocks. These different initial conditions affected the character of the stress-slip curve immediately after the onset of slip. Priming the joint causes a peak in the stress-slip response followed by a transient decay to the steady-state stress, i.e., slip weakening. Slide-hold-slide tests exhibit time-dependent strengthening. When the joint was subjected to constant shear stress, no slip was observed; that is, joint creep did not occur. One set of rate data was collected from a surface submerged in tap water, the friction was higher for this surface, but the rate sensitivity was the same as that for surfaces tested in the air-dry condition.
Paleoclimate validation of a numerical climate model
Schelling, F.J.; Church, H.W.; Zak, B.D.; Thompson, S.L.
An analysis planned to validate regional climate model results for a past climate state at Yucca Mountain, Nevada, against paleoclimate evidence for the period is described. This analysis, which will use the GENESIS model of global climate nested with the RegCM2 regional climate model, is part of a larger study for DOE`s Yucca Mountain Site Characterization Project that is evaluating the impacts of long term future climate change on performance of the potential high level nuclear waste repository at Yucca Mountain. The planned analysis and anticipated results are presented.
An experimental comparison of laboratory techniques in determining bulk properties of tuffaceous rocks; Yucca Mountain Site Characterization Project
Samples of tuffaceous rock were studied as part of the site characterization for a potential nuclear waste repository at Yucca Mountain in southern Nevada. These efforts were scoping in nature, and their results, along with those of other investigations, are being used to develop suitable procedures for determining bulk properties of tuffaceous rock in support of thermal and mechanical properties evaluations. Comparisons were made between various sample preparation, handling, and measurement techniques for both zeolitized and nonzeolitized tuff in order to assess their effects on bulk property determinations. Laboratory tests included extensive drying regimes to evaluate dehydration behavior, the acquisition of data derived from both gas and water pycnometers to compare their suitability in determining grain densities, a comparison of particle size effects, and a set of experiments to evaluate whole core saturation methods. The results affirm the added complexity of these types of measurements where there is a zeolite component in the sample mineralogy. Absolute values for the bulk properties of zeolitized tuff are immeasurable due to the complex nature of their dehydration behavior. However, the results of the techniques that were investigated provide a basis for the development of preferred, consistent methods for determining the grain density, dry and saturated bulk densities, and porosity of tuffaceous rock, including zeolitic tuff in support of thermal and mechanical properties evaluations.
Total-system performance assessment for Yucca Mountain - SNL second iteration (TSPA-1993); Volume 1
Sandia National Laboratories has completed the second iteration of the periodic total-system performance assessments (TSPA-93) for the Yucca Mountain Site Characterization Project (YMP). These analyses estimate the future behavior of a potential repository for high-level nuclear waste at the Yucca Mountain, Nevada, site under consideration by the Department of Energy. TSPA-93 builds upon previous efforts by emphasizing YMP concerns relating to site characterization, design, and regulatory compliance. Scenarios describing expected conditions (aqueous and gaseous transport of contaminants) and low-probability events (human-intrusion drilling and volcanic intrusion) are modeled. The hydrologic processes modeled include estimates of the perturbations to ambient conditions caused by heating of the repository resulting from radioactive decay of the waste. Hydrologic parameters and parameter probability distributions have been derived from available site data. Possible future climate changes are modeled by considering two separate groundwater infiltration conditions: {open_quotes}wet{close_quotes} with a mean flux of 10 mm/yr, and {open_quotes}dry{close_quotes} with a mean flux of 0.5 mm/yr. Two alternative waste-package designs and two alternative repository areal thermal power densities are investigated. One waste package is a thin-wall container emplaced in a vertical borehole, and the second is a container designed with corrosion-resistant and corrosion-allowance walls emplaced horizontally in the drift. Thermal power loadings of 57 kW/acre (the loading specified in the original repository conceptual design) and 114 kW/acre (a loading chosen to investigate effects of a {open_quotes}hot repository{close_quotes}) are considered. TSPA-93 incorporates significant new detailed process modeling, including two- and three-dimensional modeling of thermal effects, groundwater flow in the saturated-zone aquifers, and gas flow in the unsaturated zone.
A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project
This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place seals are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.
Recovery and recycling of aluminum, copper, and precious metals from dismantled weapon components
Lutz, J.D.
Sandia National Laboratories (SNL) is tasked to support The Department of Energy in the dismantlement and disposal of SNL designed weapon components. These components are sealed in a potting compound, and contain heavy metals, explosive, radioactive, and toxic materials. SNL developed a process to identify and remove the hazardous sub-components utilizing real-time radiography and abrasive water-jet cutting. The components were then crushed, granulated, screened, and separated into an aluminum and a precious-and-base-metals fraction using air-tables. Plastics were further cleaned for disposal as non-hazardous waste. New Mexico Bureau of Mines and Mineral Resources assisted SNL in investigation of size-reduction and separation technologies.
A multitasking behavioral control system for the Robotic All Terrain Lunar Exploration Rover (RATLER)
The design of a multitasking behavioral control system for the Robotic All Terrain Lunar Exploration Rover (RATLER) is described. The control system design attempts to ameliorate some of the problems noted by some researchers when implementing subsumption or behavioral control systems, particularly with regard to multiple processor systems and real-time operations. The architecture is designed to allow both synchronous and asynchronous operations between various behavior modules by taking advantage of intertask communications channels, and by implementing each behavior module and each interconnection node as a stand-alone task. The potential advantages of this approach over those previously described in the field are discussed. An implementation of the architecture is planned for a prototype Robotic All Terrain Lunar Exploration Rover (RATLER) currently under development, and is briefly described.
Practical hot oiling and hot watering for paraffin control
One of the common oil-field wellbore problems is paraffin deposition. Even though hot oiling or hot watering is usually the first method tried for removing paraffin, few operators appreciate the limitations of ``hot oiling`` and the potential for the fluid to aggravate well problems and cause formation damage. Field tests have shown that the chemical and thermal processes that occur during ``hot oiling`` are very complex and that there are significant variations in practices among operators. Key issues include: (1) During a typical hot oiling job, a significant amount of the fluid injected into the well goes into the formation, and hence, particulates and chemicals in the fluid have the potential to damage the formation. (2) Hot oiling can vaporize oil in the tubing faster than the pump lifts oil. This interrupts paraffin removal from the well, and thus the wax is refined into harder deposits, goes deeper into the well, and can stick rods. These insights have been used to determine good ``hot oiling`` practices designed to maximize wax removal and minimize formation damage.
Correlation of hot-carrier stress and ionization induced degradation in bipolar transistors
The correlation of hot carrier stress and ionization induced gain degradation in npn BJTs was studied to determine if hot-carrier stress could be used as a hardness assurance tool for total dose. The correlation was measured at the wafer level and for several hardening variations for a single process technology. Additional experiments are planned and will be presented in the full paper. Based on a detailed physical analysis of the mechanisms for hot-carrier stress and ionization no correlation was expected. The results demonstrated the lack of correlation and indicate that hot-carrier stress degradation is not a predictor of total dose response.
An electrical test system for conductor formation process analysis
Estes, T.A.
Sandia National Laboratories has designed and built an electrical test system which fulfills a requirement to quickly, accurately and precisely measure the resistance of conductors formed on Printed Wiring Board (PWB) substrates. This requirement stems from the need to measure small variations in conductors and thus to determine the source of the variations. With this test technology, experiments can be conducted with new materials, equipment, and processes in a timely and scientific manner. Conductor formation processes can be optimized for both conductor yield and uniformity, and process equipment can be fine-tuned prior to processing product to ensure that conductor attributes fulfill requirements. Significant resources have been spent by Sandia National Laboratories and Texas Instruments modifying commercially available two-probe testers. AT&T has built a two-probe tester and obtained a commercially available ``bed-of-nails`` test system. The two-probe systems have limitations in speed and precision; the ``bed-of-nails`` system has proved to be superior to the two-probe designs but is expensive, and lacks test pattern flexibility and ease of use. Due to the need to establish a testing technology which meets the requirements of Sandia National Laboratories and the National Center for Manufacturing Sciences PWB Consortium Imaging Team (current Imaging Team members; AT&T, Texas Instruments, AlliedSignal, IBM, and Sandia National Laboratories), a prototype test system was designed and built by Sandia. This paper will discuss the design and performance of the test system and the results of a comparison to other test systems.
Estimating low-dose rate irradiation response of MOSFETs
A simple method to estimate the threshold-voltage shift in MOSFETs due to low-dose-rate ionizing irradiation based on MIL-STD-883D Method 1019.4 is demonstrated. The realm of applicability of this approach is explored.
Application of diffractive optics to photonic integrated circuit packaging
Photonic packaging concepts using anamorphic microlenses and second-order grating couplers were demonstrated by coupling a ridge waveguide to an out-of-plane single-mode fiber.
Large-scale boiling experiments of the flooded cavity concept for in-vessel core retention
This paper presents results of ex-vessel boiling experiments performed in the CYBL (CYlindrical BoiLing) facility. CYBL is a reactor-scale facility for confirmatory research of the flooded cavity concept for accident management. CYBL has a tank-within-a-tank design; the inner tank simulates the reactor vessel and the outer tank simulates the reactor cavity. Experiments with uniform and edge-peaked heat flux distributions up to 20 W/cm{sup 2} across the vessel bottom were performed. Boiling outside the reactor vessel was found to be subcooled nucleate boiling. The subcooling is mainly due to the gravity head which results from flooding the sides of the reactor vessel. The boiling process exhibits a cyclic pattern with four distinct phases: direct liquid/solid contact, bubble nucleation and growth, coalescence, and vapor mass dispersion (ejection). The results suggest that under prototypic heat load and heat flux distributions, the flooded cavity in a passive pressurized water reactor like the AP-600 should be capable of cooling the reactor pressure vessel in the central region of the lower head that is addressed by these tests.
High-performance GaAs/AlGaAs optical phase modulators for microwave photonic integrated circuits
A high-performance high-speed optical phase modulator for photonic integrated circuit (PIC) use is described. Integration of these optical phase modulators into a real system (compass) is also discussed. The optical phase modulators are based on depletion-edge translation and have experimentally provided optical phase shifts in excess of 60{degrees}/V{center_dot}mm with approximately 4 dB/cm loss while simultaneously demonstrating bandwidths in excess of 10 GHz.
Portable, solid state, fiber optic coupled Doppler interferometer system for detonation and shock diagnostics
Fleming, K.J.; Crump, O.B.
VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR`s large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity have restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of an underground nuclear detonation. The solid State VISAR uses a prototype diode pumped ND:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensors were developed for fiber optic coupling (1 kilometer long) to the VISAR. The system has proven itself as a reliable, easy to use instrument that is capable of field test use and rapid data reduction using only a notebook personal computer (PC).
A strategy for analysis of TRU waste characterization needs
Regulatory compliance and effective management of the nation`s TRU waste requires knowledge about the constituents present in the waste. With limited resources, the DOE needs a cost-effective characterization program. In addition, the DOE needs a method for predicting the present and future analytical requirements for waste characterization. Thus, a strategy for predicting the present and future waste characterization needs that uses current knowledge of the TRU inventory and prioritization of the data needs is presented.
A critical examination of charge funneling and its impact on single-event upset in Si devices
Low-energy alpha particles emitted from packaging and high-energy heavy ions in space possess the capability of causing changes in memory state when incident on semiconductor memory cans and latch circuits. This phenomenon of single-event upset (SEU) is caused by collection of charge created as the particle travels through a sensitive volume of the device. As devices are continually down-sized, the corresponding decrease in amount of charge held on storage nodes increases device susceptibility to SEU. Solutions to harden devices to SEU require an in-depth understanding of the basic mechanisms responsible for upset. Also, a detailed understanding of the charge-collection volume is critical for predicting on-orbit error rates. Previous work has revealed the formation of a field funnel in response to the particle strike. Analytical models that treat the funnel in a time-averaged sense have been developed, and have been reasonably successful at predicting total collected charge for particles with low linear energy transfer (LET). Sophisticated two- and three-dimensional simulations have been used to investigate the funneling process more rigorously; however, the interplay between the funnel and collection by drift and diffusion has remained somewhat obscure. In this paper, we present an examination of fundamental charge-collection mechanisms and the role of the funnel, using advanced three-dimensional drift-diffusion modeling. We then apply the insight gained to address radiation hardness issues in light of current technology trends.
Developing communications requirements for Agile Product Realization
Sandia National Laboratories has undertaken the Agile Product Realization for Innovative electroMEchanical Devices (A-PRIMED) pilot project to develop and implement technologies for agile design and manufacturing of electrochemical components. Emphasis on information-driven processes, concurrent engineering and multi-functional team communications makes computer-supported cooperative work critical to achieving significantly faster product development cycles. This report describes analyses conducted in developing communications requirements and a communications plan that addresses the unique communications demands of an agile enterprise.
Solar activities at Sandia National Laboratories
The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth`s present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing and deploying many of these technologies over the last two decades. A common but special aspect of all of these activities is that they are all conducted in cooperation with various types of partners. Some of these partners have an interest in seeing these systems grow in the marketplace, while others are primarily concerned with economic benefits that can come from immediate use of these renewable energy systems. This paper describes solar thermal and photovoltaic technology activities at Sandia that are intended to accelerate the commercialization of these solar systems.
Scenario development for the Waste Isolation Pilot Plant: Building confidence in the assessment
Scenario developments is part of the iterative performance assessment (PA) process for the Waste Isolation Pilot Plant (WIPP). Scenario development for the WIPP has been the subject of intense external review, and is certain to be the subject of continued scrutiny as the project proceeds toward regulatory compliance. The principal means of increasing confidence is this aspect of the PA will be through the use of a systematic and thorough procedure toward developing the scenarios and conceptual models on which the assessment is to be based. Early and ongoing interaction with project reviewers can assist with confidence building. Quality of argument and clarity of presentation in PA will be of key concern. Appropriate tools are required for documenting and tracking assumptions, through a single assessment phase, and between iterative assessment phases. Risks associated with future human actions are of particular concern to the WIPP project, and international consensus on the principles for incorporation of future human actions in assessments would be valuable.
Enhanced charge trapping in bipolar spacer oxides during low-dose-rate irradiation
Thermally-stimulated-current and capacitance-voltage measurements reveal enhanced hole trapping in bipolar spacer-oxide capacitors irradiated at 0 V at low dose rates. Possible mechanisms and implications for bipolar low-rate response are discussed.
Role of burn-in during qualification testing
Significantly different radiation responses have been observed for both transistors and ICs with and without preirradiation burn-in. The hardness assurance implications of these results and possible changes to the MIL-STDs will be presented.
Development, characterization, and applications of high temperature superconductor nanobridge Josephson junctions
A well-controlled, high-yield Josephson junction process in high temperature superconductors (HTS) is necessary for the demonstration of ultra-high-speed devices and circuits which exceed the capabilities of conventional electronics. The authors developed nanobridge Josephson junctions in high quality thin-film YBaCuO with dimensions below 100 nm fabricated using electron-beam nanolithography. They characterized this Josephson junction technology for process yield, junction parameter uniformity, and overall applicability for use in high-performance circuits. To facilitate the determination of junction parameters, they developed a measurement technique based on spectral analysis in the range of 90--160 GHz of phase-locked, oscillating arrays of up to 2,450 Josephson junctions. Because of the excellent yield and uniformity of the nanobridge junctions, they successfully applied the junction technology to a wide variety of circuits. These circuits included transmission-line pulse formers and 32 and 64-bit shift registers. The 32-bit shift register was shown to operate at clock speeds near 100 GHz and is believed to be one of the faster and more complex digital circuit demonstrated to date using high temperature superconductor technology.
Renewable energy technology development at Sandia National Laboratories
The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earths present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing many of these technologies over the last two decades. This paper describes innovative solar, wind and geothermal energy systems and components that Sandia is helping to bring to the marketplace. A common but special aspect of all of these activities is that they are conducted in partnership with non-federal government entities. A number of these partners are from New Mexico.
Manufacturing feasibility of several lead-free solders for electronic assembly
This paper reports on a surface mount assembly evaluation with a series of existing lead-free solders. The wettability of the lead-free solders under investigation was measured by the meniscometer/wetting balance technique. This data provided an initial screening assessment of viable candidates for prototype development. Assembly process capability was based on visual, mechanical and metallurgical analyses of prototype circuit boards. The study demonstrated the feasibility of using several of the lead-free solders tested in a surface mount application and identified specific areas (e.g., paste formulation, board finishes, reflow parameters) for improving the manufacturing performance.
Robot trajectory planning via dynamic programming
The method of dynamic programming is applied to three example problems dealing with robot trajectory planning. The first two examples involve end-effector tracking of a straight line with rest-to-rest motions of planar two-link and three-link rigid robots. These examples illustrate the usefulness of the method for producing smooth trajectories either in the presence or absence of joint redundancies. The last example demonstrates the use of the method for rest-to-rest maneuvers of a single-link manipulator with a flexible payload. Simulation results for this example display interesting symmetries that are characteristic of such maneuvers. Details concerning the implementation and computational aspects of the method are discussed.
Correlation, functional analysis and optical pattern recognition
Correlation integrals have played a central role in optical pattern recognition. The success of correlation, however, has been limited. What is needed is a mathematical operation more complex than correlation. Suitably complex operations are the functionals defined on the Hilbert space of Lebesgue square integrable functions. Correlation is a linear functional of a parameter. In this paper, we develop a representation of functionals in terms of inner products or equivalently correlation functions. We also discuss the role of functionals in neutral networks. Having established a broad relation of correlation to pattern recognition, we discuss the computation of correlation functions using acousto-optics.
Techniques for the evaluation of outgassing from polymeric wafer pods
Mcintyre, D.C.
In recent years there has been increasing interest in using wafer-level isolation environments or pods (microenvironments) to provide a more controllable, cleaner wafer environment during wafer processing. It has been shown that pods can be effective in reducing the amount of particulate contamination on wafers during manufacturing. However, there have also been studies that indicate that pods and wafer boxes can be the source of condensible, molecular organic contamination. This paper summarizes the work that has been performed during the past year at Sandia National Laboratories` Contamination Free Manufacturing Research Center (CFMRC) on (1) devising standard, low-temperature, high sensitivity techniques to detect outgassing of volatile organic compounds (VOCs) from polymers used to construct wafer pods and (2) development of a technique that can be used to continuously measure the condensible contamination within pods so that the pod environment can be monitored during manufacturing. Although these techniques have been developed specifically for assessing contamination threats from wafer pods, they can be used to evaluate other potential contamination sources. The high sensitivity outgassing techniques can be used to evaluate outgassing of volatiles from other clean-room materials and the real-time outgassing sensor can be used to monitor contamination condensation in non-pod environments such as ballroom-type cleanrooms and minienvironments.
Software Use Control
The topic of this technical presentation is Use Control Software. The nuclear weapon software design community is being subjected to many surety forces that are stretching the envelope of their designs. Given that software is a critical part of the use control system design, we must work to limit the errors of the software development process. The objective of this paper is to discuss a methodology that the author, as a member of the Security and Use Control Assessment Department, is working on. This is the first introduction of the proposed methodology. Software that is a part of any use control system, subsystem, device, or component is critical to the operation of that apparatus. The software is expected to meet the criteria of modern software quality. In a use control application, meeting the normal quality standards is short of the expectations in meeting the use control obligations. The NWC community expects the use control features of a nuclear weapon to provide assurance that the weapon is protected from unauthorized nuclear detonation. The methodology that the author is proposing will provide a focused scrutiny to software that is used in the hardware of use control systems, subsystems, devices, and components. The methodology proposes further scrutiny of the structure of the software, memory, variables, storage, and control features.
Illuminators for extreme ultraviolet lithography cameras with ring fields
Scanning, ring-field lithographic cameras designed for 14-nm radiation can print 100-nm features on large chips. Mating high-efficiency illuminators are described.
Hydrogeological influences on radionuclide migration from the major radioactive waste burial sites at Chernobyl (A review)
This paper summarizes the recent hydrogeological investigations of several research organizations on waste confinement at the major radioactive waste (RW) burial sites immediately adjacent to the Chernobyl Nuclear Power Plant (Ch. NPP). Hydrogeological conditions and radiologic ground-water contamination levels are described. Ongoing ground-water monitoring practices are evaluated. The chemical and physical characteristics of the radionuclides within the burial sites are considered. Ground water and radionuclide transport modeling studies related to problems of the RW disposal sites are also reviewed. Current concerns on future impacts of the RW burial sites on the hydrological environment and water resources of the Ch.NPP area are discussed.
Airbags to Martian Landers: Analyses at Sandia National Laboratories
A new direction for the national laboratories is to assist US business with research and development, primarily through cooperative research and development agreements (CRADAs). Technology transfer to the private sector has been very successful as over 200 CRADAs are in place at Sandia. Because of these cooperative efforts, technology has evolved into some new areas not commonly associated with the former mission of the national laboratories. An example of this is the analysis of fabric structures. Explicit analyses and expertise in constructing parachutes led to the development of a next generation automobile airbag; which led to the construction, testing, and analysis of the Jet Propulsion Laboratory Mars Environmental Survey Lander; and finally led to the development of CAD based custom garment designs using 3D scanned images of the human body. The structural analysis of these fabric structures is described as well as a more traditional example Sandia with the test/analysis correlation of the impact of a weapon container.
Interactive Collaborative Environments (ICE): Platform independent X application sharing and multi-media over wide area networks
Platform-independent Interaction Collaborative Environments (ICE) technologies include support for simultaneous display and control of unmodified X application software by two or more people, at separate locations, using different workstation hardware. Audio and video provide remote collaborators with the ability to discuss what they are all simultaneously seeing on their workstations. Remote pointing and marking capabilities are also provided independent of the application. The authors briefly describe their X application sharing work, and requirements for supporting tools, including multi-media. Finally they review some of the pilot project network applications of their work to robotics and manufacturing environments.
SEAMIST{trademark} in-situ instrumentation and vapor sampling system applications in the Sandia Mixed Waste Landfill Integrated Demonstration Program
The SEAMIST{trademark} inverting membrane deployment system has been used successfully at the Mixed Waste Landfill Integrated Demonstration (MWLID) for multipoint vapor sampling/pressure measurement/permeability measurement/sensor integration demonstrations and borehole lining. Several instruments were deployed inside the SEAMIST{trademark} lined boreholes to detect metals, radionuclides, moisture, and geologic variations. The liner protected the instruments from contamination, maintained support of the uncased borehole wall, and sealed the total borehole from air circulation. The current activities have included the installation of three multipoint vapor sampling systems and sensor integration systems in 100-foot-deep vertical boreholes. A long term pressure monitoring program has recorded barometric pressure effects at depth with relatively high spatial resolution. The SEAMIST{trademark} system has been integrated with a variety of hydrologic and chemical sensors for in-situ measurements, demonstrating its versatility as an instrument deployment system which allows easy emplacement and removal. Standard SEAMIST{trademark} vapor sampling systems were also integrated with state-of-the-art VOC analysis technologies (automated GC, UV laser fluorometer). The results and status of these demonstration tests are presented.
Automated cleaning of electronic components
Environmental and operator safety concerns are leading to the elimination of trichloroethylene (TCE) and chlorofluorocarbon (CFC) solvents in electronic component cleaning processes that remove rosin flux, organic and inorganic contamination, and particulates. Present processes depend heavily on these solvents for manual spray cleaning of small components and subassemblies. Use of alternative solvent systems can lead to longer processing times and reduced quality. Automated spray cleaning can improve the quality of the cleaning process, thus enabling the productive use of environmentally conscious materials, while minimizing personnel exposure to hazardous materials. In addition, the use of robotic and automated systems can reduce the manual handling of parts that necessitates additional cleaning. We describe the development of a prototype robotic system for cleaning electronic components in a spray cleaning workcell. An important feature of the prototype system is the capability to generate the robot paths and motions automatically from the CAD models of the part to be cleaned, and to embed cleaning process knowledge into the automatically programmed operations.
Sandia National Laboratories interactions with organizations in the Former Soviet Union
Whiting, G.H.
This document describes Sandia National Laboratories involvement with scientists and engineers at various organizations within the states of the Former Soviet Union (FSU). The purpose of these interactions is twofold: first, to acquire technical information to enhance United States technology and second, to assist FSU states in converting their defense-oriented industry to civilian, market- oriented business.
Feasibility of permeation grouting for constructing subsurface barriers
The technical feasibility of emplacing a barrier beneath a waste site using directionally drilled boreholes and permeation grouting was investigated. The benefits of this emplacement system are: (1) Directionally drilled boreholes provide access beneath a waste site without disturbing the waste; (2) interim containment of contaminants allows time for the development of remediation options; (3) in the interim, the volume of waste remains fixed; (4) barriers may enhance the effectiveness of in situ remediation actions; and (5) barrier systems may provide permanent waste containment .
The Solar Thermal Design Assistance Center report of its activities and accomplishments in Fiscal Year 1993
Menicucci, D.F.
The Solar Thermal Design Assistance Center (STDAC) at Sandia National Laboratories is a resource provided by the US Department of Energy`s Solar Thermal Program. Its major objectives are to accelerate the use of solar thermal systems through (a) direct technical assistance to users, (b) cooperative test, evaluation, and development efforts with private industry, and (c) educational outreach activities. This report outlines the major activities and accomplishments of the STDAC in Fiscal Year 1993. The report also contains a comprehensive list of persons who contacted the STDAC by telephone for information or technical consulting.
Assessment of an active dry barrier for a landfill cover system
A dry barrier is a layer of geologic material that is dried by air flow. An active dry barrier system can be designed, installed, and operated as part of a landfill cover system. An active system uses blowers and fans to move air through a high-permeability layer within the cover system. Depending principally on the air-flow rate, it is possible for a dry barrier to remove enough water to substantially reduce the likelihood of water percolating through the cover system. If a material with a relatively great storage capacity, such as processed tuff, is used as the coarse layer, then the efficiency of the dry barrier will be increased.
Perspectives on reactor safety
The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.
Risk assessment for the intentional depressurization strategy in PWRs
An accident management strategy has been proposed in which the reactor coolant system is intentionally depressurized during an accident. The aim is to reduce the containment pressurization that would result from high pressure ejection of molten debris at vessel breach. Probabilistic risk assessment (PRA) methods were used to evaluate this strategy for the Surry nuclear power plant. Sensitivity studies were conducted using event trees that were developed for the NUREG-1150 study. It was found that depressurization (intentional or unintentional) had minimal impact on the containment failure probability at vessel breach for Surry because the containment loads assessed for NUREG-1150 were not a great threat to the containment survivability. An updated evaluation of the impact of intentional depressurization on the probability of having a high pressure melt ejection was then made that reflected analyses that have been performed since NUREG-1150 was completed. The updated evaluation confirmed the sensitivity study conclusions that intentional depressurization has minimal impact on the probability of a high pressure melt ejection. The updated evaluation did show a slight benefit from depressurization because depressurization delayed core melting, which led to a higher probability of recovering emergency core coolant injection, thereby arresting the core damage.
1993 triggered lighnting test program: Environments within 20 meters of the lighting channel and small area temporary protection concepts
Fisher, R.J.
Vertical electric fields, azimuthal magnetic fields, and earth step potentials at ground level have been measured at 10 and 20 meters from the base of triggered lightning flashes. For incident stroke peak currents in the range of 4.4 to 29 kA, vertical electric field change amplitudes as high as 210 kV/m were observed at 10 m, with rise times of the order of a few microseconds. Magnetic fields were found to follow Ampere`s law closely at both 10 and 20 m. Earth step potentials measured over a 0.5-m radial distance at the 10-m and 20m stations were linear with and had the same waveforms as the stroke currents. The step voltages exhibited a l/r distance dependence between the two measurement distances. A model that incorporates the presence of a thin surface layer, due to rain water saturation, of much higher conductivity than the bulk of the underlying earth is proposed to explain the observed behavior. Tests were also carried out to evaluate the effectiveness of several concepts for protecting a small exposed object, such as a piece of ordnance at the site of a transportation accident, from either a direct strike or from the indirect effects of electromagnetic fields produced by a nearby lightning flash to ground. Photographs of the occurrence of significant radial filamentary arcing along the surface of the ground from the strike points were acquired. This type of arcing, with a maximum radial extent of at least 20 m, was observed on six of seven of triggered flashes and on all strokes of 15-kA peak amplitude or higher.
Shock characterization of quartz phenolic composite
Goal was to obtain dynamic mechanical property data on a quartz phenolic (abbreviated QP) composite. Shock loading and shock release measurements have been conducted using impact techniques utilizing both a light-gas gun and a powder gun at impact pressures up to 20 GPa. The primary diagnostic tool used was a velocity interferometer. The data analysis includes Hugoniot measurements to give both pressure-particle velocity and shock velocity-particle velocity relationships; spall measurements to determine the fracture stress at which the material spells; and attenuation measurements to determine the shock attenuation with material thickness. The QP Hugoniot relationship was found to be significantly different than that of a phenolic without a filler material indicating that the impedance of the QP used in this investigation was higher. The spall strength was measured to be {approximately}0.075 GPa, similar to nonfilled phenolic, which indicated that the presence of quartz fibers was not contributing to the fracture strength. The material was found to attenuate an imposed shock of approximately 6.3 GPa pressure and 0.18 {mu}s to 50% of the initial impact value after a propagation distance of 7mm.
Plane Shock Generator Explosive Lens: Shock characterization of 4340 and PH13-8Mo steels, C360 brass and PZT 65/35 ferro-electric ceramic
Sandia National Laboratories is currently involved in the optimization of a Plane Shock Generator Explosive Lens (PSGEL). The PSGEL component consists of a detonator, explosive, brass cone and tamper housing. The purpose of the PSGEL component is to transmit a plane shock wave through the 4340 steel bulkhead (wave separator) which has a ferro-electric (PZT)ceramic disk attached to the opposite surface of the steel bulkhead. The planar shock wave depolarizes the PZT 65/35 ferro-electric ceramic to produce an electrical output. One aspect of the optimization program involves the possible replacement of 4340 steel with PH13-8Mo steel for the bulkhead. These materials, as well as the PZT 65/35 ferro-electric ceramic and the brass for the cone, required the stock characterization with respect to Hugoniot parameters. The work presented here gives the shock Hugoniot values for these four materials and documents their measurements.
CIRCE2/DEKGEN2: A software package for facilitated optical analysis of 3-D distributed solar energy concentrators. Theory and user manual
CIRCE2 is a computer code for modeling the optical performance of three-dimensional dish-type solar energy concentrators. Statistical methods are used to evaluate the directional distribution of reflected rays from any given point on the concentrator. Given concentrator and receiver geometries, sunshape (angular distribution of incident rays from the sun), and concentrator imperfections such as surface roughness and random deviation in slope, the code predicts the flux distribution and total power incident upon the target. Great freedom exists in the variety of concentrator and receiver configurations that can be modeled. Additionally, provisions for shading and receiver aperturing are included.- DEKGEN2 is a preprocessor designed to facilitate input of geometry, error distributions, and sun models. This manual describes the optical model, user inputs, code outputs, and operation of the software package. A user tutorial is included in which several collectors are built and analyzed in step-by-step examples.
Results of brine flow testing and disassembly of a crushed salt/bentonite block seal at the Waste Isolation Pilot Plant
The Small-Scale Seal Performance Tests, Series C, a set of in situ experiments conducted at the Waste Isolation Pilot Plant, are designed to evaluate the performance of various seal materials emplaced in large (0.9-m-diameter) boreholes. This report documents the results of fluid (brine) flow testing and water and clay content analyses performed on one emplaced seal comprised of 100% salt blocks and 50%/50% crushed salt/bentonite blocks and disassembled after nearly three years of brine injection testing. Results from the water content analyses of 212 samples taken from within this seal show uniform water content throughout the 50%/50% salt/bentonite blocks with saturations about 100%. Clay content analyses from the 100% salt endcaps of the seal show a background clay content of about 1% by weight uniformly distributed, with the exception of samples taken at the base of the seal at the borehole wall interface. These samples show clay contents up to 3% by weight, which suggests some bentonite may have migrated under pressure to that interface. Results of the brine-flow testing show that the permeability to brine for this seal was about 2 to 3 {times} 10{sup {minus}4} darcy (2 to 3 {times} 10{sup {minus}16} m{sup 2}).
Heterogeneous reaction mechanisms and kinetics relevant to the CVD of semiconductor materials
This report documents the state of the art in experimental and theoretical techniques for determining reaction mechanisms and chemical kinetics of heterogeneous reactions relevant to the chemical vapor deposition of semiconductor materials. It summarizes the most common ultra-high vacuum experimental techniques that are used and the types of rate information available from each. Several case studies of specific chemical systems relevant to the microelectronics industry are described. Theoretical methods for calculating heterogeneous reaction rate constants are also summarized.
The in situ permeable flow sensor: A device for measuring groundwater flow velocity
A new technology called the In Situ Permeable Flow Sensor has been developed at Sandia National Laboratories. These sensors use a thermal perturbation technique to directly measure the direction and magnitude of the full three dimensional groundwater flow velocity vector in unconsolidated, saturated, porous media. The velocity measured is an average value characteristic of an approximately 1 cubic meter volume of the subsurface. During a test at the Savannah River Site in South Carolina, two flow sensors were deployed in a confined aquifer in close proximity to a well which was screened over the entire vertical extent of the aquifer and the well was pumped at four different pumping rates. In this situation horizontal flow which is radially directed toward the pumping well is expected. The flow sensors measured horizontal flow which was directed toward the pumping well, within the uncertainty in the measurements. The observed magnitude of the horizontal component of the flow velocity increased linearly with pumping rate, as predicted by theoretical considerations. The measured horizontal component of the flow velocity differed from the predicted flow velocity, which was calculated with the assumptions that the hydraulic properties of the aquifer were radially homogeneous and isotropic, by less than a factor of two. Drawdown data obtained from other wells near the pumping well during the pump test indicate that the hydraulic properties of the aquifer are probably not radially homogeneous but the effect of the inhomogeneity on the flow velocity field around the pumping well was not modeled because the degree and distribution of the inhomogeneity are unknown. Grain size analysis of core samples from wells in the area were used to estimate the vertical distribution of hydraulic conductivity.
Vacuum cleaner modifications leading to reduced ESD hazards
Jones, R.D.; Chen, K.C.; Holmes, S.W.
After a series of meetings held in response to an Unsatisfactory Report on the use of vacuum cleaners, an experimental study of commonly available vacuum cleaners was conducted. The object of the study was to evaluate the effectiveness of the cleaners as electrostatic generators. The electrical charges generated by the machine can inadvertently be transferred in normal operations to electroexplosive devices (EEDs), thereby creating a potentially hazardous situation. In the course of this study, it was determined that many inexpensive commercial cleaners could be used safely providing certain modifications were made. Details of the required modification and rationale for the modification are presented in this report.
Integrated Engineering Information Technology, FY93 accommplishments
Harris, R.N.; Miller, D.K.; Neugebauer, G.L.; Orona, J.R.; Partridge, R.A.; Herman, J.D.
The Integrated Engineering Information Technology (IEIT) project is providing a comprehensive, easy-to-use computer network solution or communicating with coworkers both inside and outside Sandia National Laboratories. IEIT capabilities include computer networking, electronic mail, mechanical design, and data management. These network-based tools have one fundamental purpose: to help create a concurrent engineering environment that will enable Sandia organizations to excel in today`s increasingly competitive business environment.
An analysis of smoothed particle hydrodynamics
SPH (Smoothed Particle Hydrodynamics) is a gridless Lagrangian technique which is appealing as a possible alternative to numerical techniques currently used to analyze high deformation impulsive loading events. In the present study, the SPH algorithm has been subjected to detailed testing and analysis to determine its applicability in the field of solid dynamics. An important result of the work is a rigorous von Neumann stability analysis which provides a simple criterion for the stability or instability of the method in terms of the stress state and the second derivative of the kernel function. Instability, which typically occurs only for solids in tension, results not from the numerical time integration algorithm, but because the SPH algorithm creates an effective stress with a negative modulus. The analysis provides insight into possible methods for removing the instability. Also, SPH has been coupled into the transient dynamics finite element code PRONTO, and a weighted residual derivation of the SPH equations has been obtained.
Reentry safety for the Topaz II Space Reactor: Issues and analyses
This report documents the reentry safety analyses conducted for the TOPAZ II Nuclear Electric Propulsion Space Test Program (NEPSTP). Scoping calculations were performed on the reentry aerothermal breakup and ground footprint of reactor core debris. The calculations were used to assess the risks associated with radiologically cold reentry accidents and to determine if constraints should be placed on the core configuration for such accidents. Three risk factors were considered: inadvertent criticality upon reentry impact, atmospheric dispersal of U-235 fuel, and the Special Nuclear Material Safeguards risks. Results indicate that the risks associated with cold reentry are very low regardless of the core configuration. Core configuration constraints were therefore not established for radiologically cold reentry accidents.
Thermal performance of a depleted uranium shielded storage, transportation, and disposal package
The US Department of Energy (DOE) is responsible for management and disposal of large quantities of depleted uranium (DU) in the DOE complex. Viable economic options for the use and eventual disposal of the material are needed. One possible option is the use of DU as shielding material for vitrified Defense High-Level Waste (DHLW) storage, transportation, and disposal packages. Use of DU as a shielding material provides the potential benefit of disposing of significant quantities of DU during the DHLW storage and disposal process. Two DU package concepts have been developed by Sandia National Laboratories. The first concept is the Storage/Disposal plus Transportation (S/D+T) package. The S/D+T package consists of two major components: a storage/disposal (S/D) container and a transportation overpack. The second concept is the S/D/T package which is an integral storage, transportation, and disposal package. The package concept considered in this analysis is the S/D+T package with seven DHLW waste canisters. The S/D+T package provides shielding and containment for the DHLW waste canisters. The S/D container is intended to be used as an on-site storage and repository disposal container. In this analysis, the S/D container is constructed from a combination of stainless steel and DU. Other material combinations, such as mild steel and DU, are potential candidates. The transportation overpack is used to transport the S/D containers to a final geological repository and is not included in this analysis.
The bridge permeameter; An alternative method for single-phase, steady-state permeability measurements
Laboratory measurements of single-phase, steady-state permeability of porous rock are important for a number of different applications. The oil and gas industry uses permeability data as a key indicator of the producability of a hydrocarbon reservoir; effective containment of large volumes of oil in underground salt caverns is directly dependent upon the permeability of the adjacent cavern walls; and safe, long term underground isolation of radioactive and hazardous waste is contingent upon the flow and transport characteristics of the surrounding geologic formations. An alternative method for measuring single-phase, steady-state permeability of porous rock is presented. The use of troublesome and expensive mass flow meters is eliminated and replaced with a bridge configuration of flow resistors. Permeability values can be determined directly from differential pressures across the bridge network, resulting in potentially significant cost savings and simplification for conducting these types of measurements. Results from the bridge permeameter are compared with results obtained using conventional methods.
Applications of fiber optics in physical protection
Buckle, T.H.
The purpose of this NUREG is to provide technical information useful for the development of fiber-optic communications and intrusion detection subsystems relevant to physical protection. There are major sections on fiber-optic technology and applications. Other topics include fiber-optic system components and systems engineering. This document also contains a glossary, a list of standards and specifications, and a list of fiber-optic equipment vendors.
An evaluation of fiber optic intrusion detection systems in interior applications
This report discusses the testing and evaluation of four commercially available fiber optic intrusion detection systems. The systems were tested under carpet-type matting and in a vaulted ceiling application. This report will focus on nuisance alarm data and intrusion detection results. Tests were conducted in a mobile office building and in a bunker.
Summary of MELCOR 1.8.2 calculations for three LOCA sequences (AG, S2D, and S3D) at the Surry Plant
Activities involving regulatory implementation of updated source term information were pursued. These activities include the identification of the source term, the identification of the chemical form of iodine in the source term, and the timing of the source term`s entrance into containment. These activities are intended to support a more realistic source term for licensing nuclear power plants than the current TID-14844 source term and current licensing assumptions. MELCOR calculations were performed to support the technical basis for the updated source term. This report presents the results from three MELCOR calculations of nuclear power plant accident sequences and presents comparisons with Source Term code Package (STCP) calculations for the same sequences. The three low-pressure sequences were analyzed to identify the materials which enter containment (source terms) and are available for release to the environment, and to obtain timing of sequence events. The source terms include fission products and other materials such as those generated by core-concrete interactions. All three calculations, for both MELCOR and STCP, analyzed the Surry plant, a pressurized water reactor (PWR) with a subatmospheric containment design.
An assessment of leadership in geothermal energy technology research and development
Geothermal energy is one of the more promising renewable energy technologies because it is environmentally benign and, unlike most renewable energy sources, can provide base power. This report provides an assessment of the research and development (R&D) work underway in geothermal energy in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. While the R&D work underway in the US exceeds the R&D efforts of the other countries, the lead is eroding. This erosion is due to reductions in federal government funding for geothermal energy R&D and the decline of the US petroleum industry. This erosion of R&D leadership is hindering commercialization of US geothermal energy products and services. In comparison, the study countries are promoting the commercialization of their geothermal energy products and services. As a result, some of these countries, in particular Japan, will probably have the largest share of the global market for geothermal energy products and services; these products and services being targeted toward the developing countries (the largest market for geothermal energy).
A two-level parallel direct search implementation for arbitrarily sized objective functions
In the past, many optimization schemes for massively parallel computers have attempted to achieve parallel efficiency using one of two methods. In the case of large and expensive objective function calculations, the optimization itself may be run in serial and the objective function calculations parallelized. In contrast, if the objective function calculations are relatively inexpensive and can be performed on a single processor, then the actual optimization routine, itself may be parallelized. In this paper, a scheme based upon the Parallel Direct Search (PDS) technique is presented which allows the objective function calculations to be done on an arbitrarily large number (p2) of processors. If, p, the number of processors available, is greater than or equal to 2p{sub 2} then the optimization may be parallelized as well. This allows for efficient use of computational resources since the objective function calculations can be performed on the number of processors that allow for peak parallel efficiency and then further speedup may be achieved by parallelizing the optimization. Results are presented for an optimization problem which involves the solution of a PDE using a finite-element algorithm as part of the objective function calculation. The optimum number of processors for the finite-element calculations is less than p/2. Thus, the PDS method is also parallelized. Performance comparisons are given for a nCUBE 2 implementation.
Long-term sealing analyses for US Strategic Petroleum Reserve (SPR) caverns
It is inevitable that sealing and abandonment will someday occur in a SPR cavern or caverns. To gain insight into the long-term behavior of a typical SPR cavern following sealing and abandonment, a suite of mechanical finite-element calculations was performed. The initial analyses predict how quickly and to what extent a cavern pressurizes after it is plugged. The analyses also examine the stability of the cavern as it changes shape due to the excessive pressures generated as the salt creeps and the brine in the cavern thermally expands. These large-scale analyses do not include the details of the plug but assume a good seal is established in the cavern wells. In another series of analyses, the potential for forming a leak at the plug is evaluated. A cement plug, emplaced in the casing seat of a cavern well, is loaded using the predicted brine pressures from the cavern analyses. The plugged casing analyses examine the potential for forming a leak path in and along the interfaces of salt, casing, and cement plug. In the last set of analysis, the dimensional scale of the problem is further reduced to examine a preexisting crack along a casing/salt interface. The cracked interface is assumed to be fluid filled and fully pressurized by the cavern fluids. The analyses address the potential for the fluid path to extend upwards along a plugged casing should an open microannulus surround the casing after it is plugged.
An application reference model for layered manufacturing
Kennicott, P.R.
The Intelligent Manufacturing Systems (IMS) Test Case 6 project (Rapid Product Development) was set up to demonstrate rapid product development and 3D measurement techniques where the agencies performing the work were distributed over different countries. Test Case 6 provided a unique opportunity to examine the process by which an application protocol (AP) of the Standard for Exchange of Product Data is prepared. The test case had a well defined scope, the production of simple parts by means of layered manufacturing techniques. The information concerned with this manufacture was similarly well defined, due to the requirement that the information be transmitted among the organizations participating in the test case. STEP is an international standard specifying the data content and format for storage and exchange of product data throughout the product`s life cycle. STEP has been under development since 1984 and is just now emerging as an International Standard. STEP is specified as a series of information models using the EXPRESS computer language. For purposes of data exchange, a mapping to a physical file format is specified. Informally, product data can be defined as all the data about a product which one might wish to save. This definition implies some variation in the amount of data to be saved in any one instance. In the case of Test Case 6, one would certainly wish to save the IGES files describing the part. One may or may not wish to save the manufacturing parameters. While there are many parts of STEP with different purposes, the important series of parts for the purposes of standardizing product data are those dealing with application protocols. An application protocol specifies the details of product data within the context of a single application (in this case, layered manufacturing). Other APs deal with such subjects as configuration-managed solid parts and associated drafting.
Natural sets in manipulation tasks
A key feature distinguishing robotics from traditional computer science is its connection to the physical world. Robot planning software may use elegant algorithms supported by ironclad analytic proofs, but ultimately nature will decide whether the software output is correct in the sense of accomplishing the task goal. Thus a chief goal of robotics research is to understand and capture this nature in a way that allows algorithmic analysis to produce robust physical results. This is made particularly difficult by the presence of uncertainty, which arises from the inevitable discrepancy between the real task and its idealized computer model. This paper reviews fundamental sets of states, forces, and actions that exist for a broad class of robot manipulation tasks, and ties these sets to past and future approaches to developing robust manipulation planning and execution systems.
Computational methods for describing the laser-induced mechanical response of tissue
Detailed computational modeling of laser surgery requires treatment of the photoablation of human tissue by high intensity pulses of laser light and the subsequent thermomechanical response of the tissue. Three distinct physical regimes must be considered to accomplish this: (1) the immediate absorption of the laser pulse by the tissue and following tissue ablation, which is dependent upon tissue light absorption characteristics; (2) the near field thermal and mechanical response of the tissue to this laser pulse, and (3) the potential far field (and longer time) mechanical response of witness tissue. Both (2) and (3) are dependent upon accurate constitutive descriptions of the tissue. We will briefly review tissue absorptivity and mechanical behavior, with an emphasis on dynamic loads characteristic of the photoablation process. In this paper our focus will center on the requirements of numerical modeling and the uncertainties of mechanical tissue behavior under photoablation. We will also discuss potential contributions that computational simulations can make in the design of surgical protocols which utilize lasers, for example, in assessing the potential for collateral mechanical damage by laser pulses.
Semiconductor microcavity lasers
New kinds of semiconductor microcavity lasers are being created by modern semiconductor technologies like molecular beam epitaxy and electron beam lithography. These new microcavities exploit 3-dimensional architectures possible with epitaxial layering and surface patterning. The physical properties of these microcavities are intimately related to the geometry imposed on the semiconductor materials. Among these microcavities are surface-emitting structures which have many useful properties for commercial purposes. This paper reviews the basic physics of these microstructured lasers.
The National Center for Advanced Information Components Manufacturing: Program update
The National Center for Advanced Information Components Manufacturing (NCAICM) Projects focus on manufacturing processes, materials, user facilities, standard tools, and equipment for large area emissive flat panel displays and microelectronics. Two types of projects are funded: (1) precompetitive projects done at the Center, and (2) joint industry/national laboratory projects, which may carry intellectual property rights, where the work will be done at the appropriate industry or laboratory site. A summary of the NCAICM Projects will be presented.
Photonics at Sandia National Laboratories: From research to applications
Meyer, J.
Photonics activities at Sandia National Laboratories (SNL) are founded on a strong materials research program. The advent of the Compound Semiconductor Research Laboratory (CSRL) in 1988, accelerated device and materials research and development. Recently, industrial competitiveness has been added as a major mission of the labs. Photonics projects have expanded towards applications-driven programs requiring device and subsystem prototype deliveries and demonstrations. This evolution has resulted in a full range of photonics programs from materials synthesis and device fabrication to subsystem packaging and test.
Technology features of a network technology for safeguards applications
Johnson, C.S.
This report describes a new flexible technology which is now available to design sensor and control networks based on a protocol embedded in an intelligent communications processor. The flexibility allows a system designer and/or a technical installer to make appropriate tradeoffs among simplicity, functionality, and cost in the design of network nodes and their installation. This is especially important in designing an installation scenario for the safeguards network. The network technology permits several choices of installations with the same basic node hardware. A pre-installed network offers maximum simplicity and no flexibility since it will operate as programmed during manufacture or the pre-installation setup and checkout. At the other end of the spectrum, a network can be installed using network management software and a computer. The combination of the network management software and computer hardware is generally referred to as a Network Management Tool (NMT). The NMT option offers full flexibility to change the network during or after installation. Different NMT can provide different degrees of complexity depending upon the applications and the amount of changes that need to be made during installation.
Operator aids for prediction of source term attenuation
Simplified expressions for the attenuation of radionuclide releases by sprays and by water pools are devised. These expressions are obtained by correlation of the 10th, 50th and 90th percentiles of uncertainty distributions for the water pool decontamination factor and the spray decontamination coefficient. These uncertainty distributions were obtained by Monte Carlo uncertainty analyses using detailed, mechanistic models of the pools and sprays. Uncertainties considered in the analyses include uncertainties in the phenomena and uncertainties in the initial and boundary conditions during dictated by the progression of the severe accidents. Final results are graphically displayed in terms of the decontamination factor achieved at selected levels of conversatism versus pool depth and water subcooling or, in the case of sprays, versus time.
Rapid prototyping applications at Sandia National Laboratories
In an effort to reduce the cycle time for producing prototypical mechanical and electro-mechanical components, Sandia National Laboratories has integrated rapid prototyping processes into the design and manufacturing process. The processes currently in operation within the Rapid Prototyping Laboratory are Stereolithography (SL), Selective Laser Sintering (SLS), and Direct Shell Production Casting (DSPC). These emerging technologies have proven to be valuable tools for reducing lead times and fabrication costs. Sandia uses the SL and SLS processes to support internal product development efforts. Their primary use is to fabricate patterns for investment casting in support of a Sandia-managed program called FASTCAST that integrates computational technologies and experimental data into the investment casting process. These processes are also used in the design iteration process to produce proof-of-concept models, hands-on models for design reviews, fit-check models, visual aids for manufacturing, and functional parts in assemblies. The DSPC process is currently being developed as a method of fabricating ceramic investment casting molds directly from a CAD solid model. Sandia is an Alpha machine test site for this process. This presentation will provide an overview of the SL and SLS processes and an update of our experience and success in integrating these technologies into the product development cycle. It will also provide a lead-in for a tour of the Rapid Prototyping Laboratory, where these processes will be demonstrated.
Unique passive diagnostic for slapper detonators
The objective of this study was to find a material and configuration that could reliably detect the proper functioning of a current slapper detonator. Because of the small size of the slapper geometry (on the order of a 15 mils), most diagnostic techniques are not suitable. This program has the additional requirement that the device could not use any electrical power or output signals. This required that the diagnostic be completely passive. The paper describes the three facets of the development effort: complete characterization of the slapper using VISAR measurements, selection of the diagnostic material and configuration, and testing of the prototype designs. The VISAR testing required the use of a special optical probe to allow the laser light to reach both bridges of the slapper detonator. Results are given in the form of flyer velocity as a function of the initiating voltage level. The selected diagnostic design functions in a manner similar to a dent block except that the impact of the Kapton disk causes a fracture pattern. A quick visual inspection is all that is needed to determine if the flyer velocity exceeded the threshold value. Sub-threshold velocities produce a substantially different appearance.
Bootstrap planning: Theory and application
Chen, P.C.
We identify a general framework for weak planning called bootstrap planning, which is defined as global planning using only a local planner along with some memory for learning intermediate subgoals. We present a family of algorithms for bootstrap planning, and provide some initial theory on their performance. In our theoretical analysis, we develop a random digraph problem model and use it to make some performance predictions and comparisons of these algorithms. We also use it to provide some techniques for approximating the optimal resource bound on the local planner to achieve the best global planner. We validate our theoretical results with empirical demonstration on the 15-puzzle. We show how to reduce the planning cost of a global planner by 2 orders of magnitude using bootstrap planning. We also demonstrate a natural but not widely recognized connection between search costs and the lognormal distribution.
Design considerations in Li/SOCl{sub 2} battery technology
Li/SOCl{sub 2} battery technology is attractive by virtue of its high energy density, low self-discharge rate, and ability to to perform well at a wide variety of discharge rates. However, some of these same attributes also make Li/SOCl{sub 2} cells capable of hightly exothermic events when handled under abnormal conditions. We manage the energy safely and optimize the performance by tailoring the design to the application. We have developed three different ``D`` size cells that target low, moderate, and high rate applications. Each design provides safe and efficient performance, although, in progressing from low to high rate capability, the likelihood of venting under abuse conditions increses. We incorporate a vent mechanism in all designs as the ultimate protection from severe abuse. The details of our battery designs and the benefits of application-specific design are discussed.
A comparison of spent fuel shipping cask response to 10 CFR 71 normal conditions and realistic hot day extremes
The structural properties of spent nuclear fuel shipping containers vary as a function of the cask wall temperature. An analysis is performed to determine the effect of a realistic, though bounding, hot day environment on the thermal behavior of spent fuel shipping casks. These results are compared to those which develop under a steady-state application of the prescribed normal thermal conditions of 10CFR71. The completed analysis revealed that the majority of wall temperatures, for a wide variety of spent fuel shipping cask configurations, fall well below those predicted by using the steady-state application of the regulatory boundary conditions. It was found that maximum temperatures at the cask surface occasionally lie above temperatures predicted under the regulatory condition. This is due to the conservative assumptions present in the ambient conditions used. The analysis demonstrates that diurnal temperature variations which penetrate the cask wall have maxima substantially less than the corresponding temperatures obtained when applying the steady-state regulatory boundary conditions. Therefore, it is certain that vital cask components and the spent fuel itself will not exceed the temperatures calculated by use of the steady-state interpretation of the 10CFR71 normal conditions.
The advent of failure analysis software technology
The increasing complexity of integrated circuits demands that software tools, in addition to hardware tools, be used for successful diagnosis of failure. A series of customizable software tools have been developed that organize failure analysis information and provide expert level help to failure analysts to increase their productivity and success.
An integrated approach to the characterization and decontamination of uranium contaminated soils
An Integrated Demonstration (ID) Program, hosted by the Fernald Environmental Restoration Management Company, has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. Chemical and physical characterization of Fernald soils and the uranium wastes contained therein is being accomplished by means of standard analytical techniques as well as a suite of non-standard microscopy and spectroscopy techniques. Likewise, a suite of physical and chemical extraction technologies are being designed and tested for accomplishing soil decontamination. However, the main theme of this paper is not the technologies being tested but the approach taken to integrate characterization, decontamination, and risk assessment efforts. It is the authors intent to outline the critical components of an integrated approach for characterizing and remediating uranium contaminated soils as well as provide a real-world example based on the lessons learned in the ID program.
Recent developments in phyroshock simulation using fixtures with tunable resonant frequencies
Pyroshock is a potentially severe environment produced by the detonation of explosively actuated components and stage separation hardware. Electronic components exposed to pyroshock events during flight or deployment can be damaged by this high frequency, high G shock. Flight qualification of these components may be accomplished using one of many existing techniques to simulate the pyroshock environment in the laboratory. Two new techniques developed at Sandia National Laboratories allow larger components to be tested to a wide variety of pyroshock environments. The frequency content and amplitude of the simulated pyroshock can be easily controlled in a predictable manner. The pyroshock environment is produced by the resonant response of a test fixture that has been excited by a mechanical impact. The resonant fixture has a dominant frequency that can be continuously adjusted over a frequency range that is typically found in most pyroshock environments. The test apparatus and techniques utilized by each method will be described in this paper. Experimental results will be presented which illustrate the capabilities of each method.
Safeguards equipment of the future: Integrated monitoring systems and remote monitoring
Sonnier, C.S.; Johnson, C.S.
From the beginning, equipment to support IAEA Safeguards could be characterized as that which is used to measure nuclear material, Destructive Assay (DA) and Non Destructive Assay (NDA), and that which is used to provide continuity of knowledge between inspection intervals, Containment & Surveillance (C/S). C/S equipment has often been thought of as Cameras and Seals, with a limited number of monitors being employed as they became available. In recent years, technology has advanced at an extremely rapid rate, and continues to do so. The traditional film cameras are being replaced by video equipment, and fiber optic and electronic seals have come into rather widespread use. Perhaps the most interesting aspect of this evolution, and that which indicates the wave of the future without much question, is the integration of video surveillance and electronic seals with a variety of monitors. This is demonstrated by safeguards systems which are installed in several nuclear facilities in France, Germany, Japan, the UK, the USA, and elsewhere. The terminology of Integrated Monitoring Systems (IMS) has emerged, with the employment of network technology capable of interconnecting all desired elements in a very flexible manner. Also, the technology for transmission of a wide variety of information to off-site locations, termed Remote Monitoring, is in widespread industrial use, requiring very little adaptation for safeguards use. This paper examines the future of the Integrated Monitoring Systems and Remote Monitoring in International Safeguards, including technical and other related factors.
High temperature ductility loss in titanium alloys -- A review
It is well known that two phase titanium alloy systems suffer from an abrupt drop in ductility at elevated temperatures in the range of 1,000 to 1,150 K. This loss of ductility is manifested by easy decohesion of polycrystalline aggregates along the grain boundaries of the high temperature beta phase. If the alloy is in a state of tensile stress at the aforementioned temperatures, cracks initiate at the grain boundaries and propagate readily through the alloy, leading to premature failure. This phenomenon is a cause of major concern in titanium alloy fabrication and welding. Several mechanisms have been proposed to explain high temperature crack nucleation and growth along the boundaries. A critical review of the phenomenon and possible mechanisms responsible for the observed behavior will be discussed.
Development of dry barriers for containment and remediation at waste sites
This paper describes a concept in which dry air is injected into an unsaturated formation to reduce the soil moisture content, referred to here as a dry (or sometimes tensiometric) barrier. The objective is to reduce the hydraulic conductivity of the unsaturated media to the point where liquid phase transport becomes negligible, thereby achieving containment. The concept could be applied in subsurface formations to provide containment from a leaking facility, or it could be incorporated into a cover design to provide redundancy for a capillary barrier. The air injection process could in principle be coupled with a vacuum extraction system to recover soil vapors, which would then provide a remediation process that would be appropriate if volatile organic compounds were present. Work to date has consisted of a combined theoretical, laboratory, and field research investigation. The objective of this research was to demonstrate the technical feasibility of the dry barrier concept by identifying the parameters which determine its effectiveness. Based on the results obtained for the experimental and theoretical studies, feasibility analyses were prepared for as a modification for a landfill cover design to prevent infiltration from atmospheric precipitation and for potential application of dry barriers to achieve subsurface containment and removal of volatile constituents. These analyses considered the technical as well as the economic aspects of the dry barrier concept.
Toxicity evaluation and hazard review for Rigid Foam
Rigid Foam is a chemical delay foam used to completely encapsulate an object or to block access to an area. Prior studies have indicated that the final foam product is essentially non-toxic. The purpose of this study was to evaluate and summarize the current chemical and toxicological data available on the components of Rigid Foam and to update the information available on the toxicity of the final Rigid Foam product. Since the possibility exists for a partial deployment of Rigid Foam where only one of the components is released, this study also examined the toxicity of its chemical constituents. Rigid Foam is composed of an {open_quotes}A{close_quotes} and {open_quotes}B{close_quotes} Component. The {open_quotes}A{close_quotes} component is primarily a polymeric isocyanate and the {open_quotes}B{close_quotes} component is a mixture of polyols. In addition to the primary constituents, dichlorodifluoromethane and trichlorofluoromethane are present as blowing agents along with catalysts and silicone surfactants necessary for foaming. The pre-deployed {open_quotes}A{close_quotes} and {open_quotes}B{close_quotes} components are stored in separate vessels and are brought together in static mixing nozzles for dispersal. The results of this evaluation indicate that a completely deployed Rigid Foam under normal conditions is essentially non-toxic as determined previously. However, in the event of a partial deployment or deployment of an individual component directly at an unprotected individual, the degree of hazard is increased due to the toxic and corrosive nature of the individual constituents. The health hazard would depend on the properties of the material to which the person was exposed.
A new analysis of the Vixen A Trials
The source term for assessing events that involve the combustion of metallic plutonium (Pu) presents a continuing need in carrying out safety evaluations in support of DOE programs involving nuclear weapons. For production, storage, transport and decommissioning operations, an accident sequence that frequently must be evaluated involves metallic Pu being exposed in a fire environment. There are significant data on which to base an estimate for the source term which has been surveyed recently by Mishima et al (Mishima, 1993), but much of the surveyed work relates to well controlled laboratory experiments with relatively small amounts of Pu. One of the most relevant sources of information was the work by Stewart (Stewart, 1959) of the UK Atomic Weapon Research Establishment at Aldermaston. That work, referred to as the Vixen A Trials provides direct experimental data on the aerosolization and environmental releases from relatively large metallic Pu shapes immersed in a ``petrol`` fire. A new analysis of the air sampler data from the two Vixen A Trials experiments involving chunks of plutonium exposed to hydrocarbon fuel fires indicated a respirable release fraction (referenced to total plutonium involved) of 0.0001 to 0.0003 (1 E-4 to 3 E-4) depending on the parameters used in the atmospheric transport and dispersion model used. A value of 3 E-4 is recommended as an upper limit for use in safety assessment studies involving similar accident scenarios.
Using Monte Carlo techniques and parallel processing for debris hazard analysis of rocket systems
Sandia National Laboratories has been involved with rocket systems for many years. Some of these systems have carried high explosive onboard, while others have had FTS for destruction purposes whenever a potential hazard is detected. Recently, Sandia has also been involved with flight tests in which a target vehicle is intentionally destroyed by a projectile. Such endeavors always raise questions about the safety of personnel and the environment in the event of a premature detonation of the explosive or an activation of the FTS, as well as intentional vehicle destruction. Previous attempts to investigate fragmentation hazards for similar configurations have analyzed fragment size and shape in detail but have computed only a limited number of trajectories to determine the probabilities of impact and casualty expectations. A computer program SAFETIE has been written in support of various SNL flight experiments to compute better approximations of the hazards. SAFETIE uses the AMEER trajectory computer code and the Engineering Sciences Center LAN of Sun workstations to determine more realistically the probability of impact for an arbitrary number of exclusion areas. The various debris generation models are described.
Characterization of the SPR II generated radiation environments next to and within a guidance system
The neutron fluences and spectra and the gamma ray doses inside and in the vicinity of a guidance system exposed to the Sandia Pulsed Reactor II (SPR II) in four configurations have been determined. This project required customization of the environment and the application of new techniques to determine the spectra within the system. The required radiation environment was achieved, and the experimental results clearly demonstrated that the radiation environment inside the system was very different from that seen outside. This example demonstrates very clearly that experimenters must consider the effect the test apparatus may have on the environment inside the system.
Implantable sensor technology
Love, J.T.
Abstract not provided.
Utility Battery Storage Systems Program report for FY93
Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses, contract development, and testing of rechargeable batteries and systems for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1993.
Wavefront sensing applications of binary optics
The advent of micro- or binary optics technology has made possible the fabrication of a variety of new optical devices. Optical fabrication is no longer limited by surfaces that can be made by grinding and polishing, or even diamond turning. In fact, optics with no symmetry, no smooth surfaces, and that perform multiple functions can be readily fabricated. While these optics have a large number of applications, they are extremely useful for systems that require arrays of small optics or aperture multiplexing, since these are fabricated using computer controlled photo-lithography and etching processes. We have applied binary optics technology to construct various wavefront sensing using four mask processes to create 16 level optics. They are binary in the sense that they use discrete phase levels, not in the sense of using only two levels (they might more properly be called digital optics). We have found that 16 levels is adequate for most systems, giving greater than 99% of efficiency.
Electrostatic Discharge testing of propellants and primers
Berry, R.B.
This report presents the results of testing of selected propellants and primers to Electrostatic Discharge (ESD) characteristic of the human body. It describes the tests and the fixturing built to accommodate loose material (propellants) and the packed energetic material of the primer. The results indicate that all powders passed and some primers, especially the electric primers, failed to pass established requirements which delineate insensitive energetic components. This report details the testing of components and materials to four ESD environments (Standard ESD, Severe ESD, Modified Standard ESD, and Modified Severe ESD). The purpose of this study was to collect data based on the customer requirements as defined in the Sandia Environmental Safety & Health (ES&H) Manual, Chapter 9, and to define static sensitive and insensitive propellants and primers.
Purchasing and Materials Management Organization, Sandia National Laboratories annual report, fiscal year 1993
Martin, D.R.
This report summarizes the purchasing and transportation activities of the Purchasing and Materials Management Organization for Fiscal Year 1993. Activities for both the New Mexico and California locations are included.
Assessment of hoist failure rate for Payload Transporter III
Assessment of the hoist failure rate for the Payload Transporter Type III (PT-III) hoist was completed as one of the ground transportation tasks for the Minuteman II (MMIII) Weapon System Safety Assessment. The failures of concern are failures that lead to dropping a reentry system (RS) during hoist operations in a silo or the assembly, storage, and inspection building for a MMIII wing. After providing a brief description of the PT-III hoist system, the author summarizes his search for historical data from industry and the military services for failures of electric hoist systems. Since such information was not found, the strategy for assessing a failure rate was to consider failure mechanisms which lead to load-drop accidents, estimate their rates, and sum the rates for the PT-III hoist failure rate. The author discusses failure mechanisms and describes his assessment of a chain failure rate that is based on data from destructive testing of a chain of the type used for the PT-III hoist and projected usage rates for hoist operations involving the RS. The main result provides upper bounds for chain failure rates that are based on these data. No test data were found to estimate failure rates due to mechanisms other than chain failure. The author did not attempt to quantify the effects of human factors on the PT-III hoist failure rate.
Application of the modified voltage-dividing potentiometer to overlay metrology in a CMOS/bulk process
The measurement of layer-to-layer feature overlay will, in the foreseeable future, continue to be a critical metrological requirement for the semiconductor industry. Meeting the image placement metrology demands of accuracy, precision, and measurement speed favors the use of electrical test structures. In this paper, a two-dimensional, modified voltage-dividing potentiometer is applied to a short-loop VLSI process to measure image placement. The contributions of feature placement on the reticle and overlay on the wafer to the overall measurement are analyzed and separated. Additional sources of uncertainty are identified, and methods developed to monitor and reduce them are described.
Sandia Technology engineering and science accomplishments
This report briefly discusses the following research being conducted at Sandia Laboratories: Advanced Manufacturing -- Sandia technology helps keep US industry in the lead; Microelectronics-Sandia`s unique facilities transform research advances into manufacturable products; Energy -- Sandia`s energy programs focus on strengthening industrial growth and political decisionmaking; Environment -- Sandia is a leader in environmentally conscious manufacturing and hazardous waste reduction; Health Care -- New biomedical technologies help reduce cost and improve quality of health care; Information & Computation -- Sandia aims to help make the information age a reality; Transportation -- This new initiative at the Labs will help improve transportation, safety,l efficiency, and economy; Nonproliferation -- Dismantlement and arms control are major areas of emphasis at Sandia; and Awards and Patents -- Talented, dedicated employees are the backbone of Sandia`s success.
Assessment of the impact of degraded shear wall stiffnesses on seismic plant risk and seismic design loads
Test results sponsored by the USNRC have shown that reinforced shear wall (Seismic Category I) structures exhibit stiffnesses and natural frequencies which are smaller than those calculated in the design process. The USNRC has sponsored Sandia National Labs to perform an evaluation of the effects of the reduced frequencies on several existing seismic PRAs in order to determine the seismic risk implications inherent in these test results. This report presents the results for the re-evaluation of the seismic risk for three nuclear power plants: the Peach Bottom Atomic Power Station, the Zion Nuclear Power Plant, and Arkansas Nuclear One -- Unit 1 (ANO-1). Increases in core damage frequencies for seismic initiated events at Peach Bottom were 25 to 30 percent (depending on whether LLNL or EPRI hazard curves were used). At the ANO-1 site, the corresponding increases in plant risk were 10 percent (for each set of hazard curves). Finally, at Zion, there was essentially no change in the computed core damage frequency when the reduction in shear wall stiffness was included. In addition, an evaluation of deterministic ``design-like`` structural dynamic calculations with and without the shear stiffness reductions was made. Deterministic loads calculated for these two cases typically increased on the order of 10 to 20 percent for the affected structures.
Multimedia as a desktop and classroom tool
Nelson, S.
The major thrust of the study leading to this report was a quick, but in-depth, understanding of the process for using multimedia computer equipment for information exchange within our engineering office and within the school environment. That is, how feasible is it to augment the typical office memo or school instruction sheet with pictures, video, and sounds? What specialized skills, hardware, and software are needed by those of us who want to use the technology? The brief study period allowed for an examination of available hardware and software, observation of current approaches to multimedia within our particular environment, and the development of applications, all within the context of several project areas: The Sandia Science Advisors program; a Sandia scientific project associated with the National Information Infrastructure Testbed; the curriculum of Monte Vista Elementary School of Albuquerque Public Schools; and the University of New Mexico Medical School Health Scene project.
An assessment of research and development leadership in advanced batteries for electric vehicles
Due to the recently enacted California regulations requiring zero emission vehicles be sold in the market place by 1998, electric vehicle research and development (R&D) is accelerating. Much of the R&D work is focusing on the Achilles` heel of electric vehicles -- advanced batteries. This report provides an assessment of the R&D work currently underway in advanced batteries and electric vehicles in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. Although the US can be considered one of the leading countries in terms of advanced battery and electric vehicle R&D work, it lags other countries, particularly France, in producing and promoting electric vehicles. The US is focusing strictly on regulations to promote electric vehicle usage while other countries are using a wide variety of policy instruments (regulations, educational outreach programs, tax breaks and subsidies) to encourage the use of electric vehicles. The US should consider implementing additional policy instruments to ensure a domestic market exists for electric vehicles. The domestic is the largest and most important market for the US auto industry.
Testing technology. A Sandia Technology Bulletin
This Sandia publication seeks to facilitate technology exchange with industries, universities, and government agencies. It presents brief highlights of four projects. First is a project to simulate the use of airbags to soften the landing of a probe on Mars. Second is the use of a computer simulation system to facilitate the testing of designs for different experiments, both for experimental layout and results analysis. Third is the development of a system for in-house testing of batteries and capacitive energy storage systems, for deployment at the manufacturing sites, as opposed to final use areas. Finally is information on a noncontact measurement system which can be used to determine axes on objects of different shapes, with high precision.
Interim report for SNL/NM environmental drilling project
Wemple, R.P.
Concern for the environment and cost reduction are the driving forces for a broad effort in government and the private sector to develop new, more cost-effective technologies for characterizing, monitoring and remediating environmental sites. Secondary goals of the characterization, monitoring and remediation (CMR) activity are: minimize secondary waste generation, minimize site impact, protect water tables, and develop methods/strategies to apply new technologies. The Sandia National Laboratories (SNL) project in directional boring for CMR of waste sites with enhanced machinery from the underground utility installation industry was initiated in 1990. Preliminary activities included surveying the directional drilling access needs of various DOE sites, identifying an existing class of machinery that could be enhanced for environmental work through development, and establishing a mutually beneficial working relationship with an industry partner. Since that time the project has tested a variety of prototype machinery and hardware built by the industrial partner, and SNL. The project continues to test and develop the machinery and technique refinements needed for future applications at DOE, DOD, and private sector sites. The original goal of cost-effectiveness is being met through innovation, adaptation, and application of fundamental concepts. Secondary goals are being met via a basic philosophy of ``cut/thrust and compact cuttings without adding large quantities of fluid`` to an environmental problem site. Technology transfer to the private sector is ongoing and ultimately should result in commercial availability of the machinery. Education of regulatory agencies resulting in restructuring appropriate regulatory standards for specification of the horizontal drilling techniques will be a final project goal.
Status of the Beneficial Uses Shipping System cask (BUSS)
The Beneficial Uses Shipping System cask is a Type B packaging developed by Sandia National Laboratories for the U.S. Department of Energy. The cask is designed to transport special form radioactive source capsules (cesium chloride and strontium fluoride) produced by the Department of Energy`s Hanford Waste Encapsulation and Storage Facility. This paper describes the cask system and the analyses performed to predict the response of the cask in impact, puncture, and fire accident conditions as specified in the regulations. The cask prototype has been fabricated and Certificates of Compliance have been obtained.
Development of an alanine dosimeter for gamma dosimetry in mixed environments -- Summary of research
L-{alpha}-alanine, a nontoxic polycrystalline amino acid, has been investigated for use in high-precision, high-level absorbed-dose measurements in mixed neutron/photon environments such as research and test reactors. The technique is based on the use of electron paramagnetic resonance spectroscopy to determine the extent of free radical production in a sample exposed to ionizing radiation, and has been successfully used for photon absorbed-dose measurements at levels exceeding 10{sup 5} Gy with high measurement precision. Application of the technique to mixed environments requires knowledge of the energy-dependent response of the dosimeter for both photons and neutrons. Determination of the dosimeter response to photons is accomplished by irradiations in {sup 60}Co and bremsstrahlung sources and by calculations of energy-dependent photon kerma. Neutron response is determined by irradiations in conjunction with CaF{sub 2}:Mn thermoluminescence dosimeters and by calculations of energy-dependent neutron kerma. Several neutron environments are used, including those provided by the Annular Core Research Reactor and Sandia Pulsed Reactor.
The RADTRAN 4 computational system for transportation risk assessment: A prototype for the information superhighway
Neuhauser, K.S.
The RADTRAN 4 computer code for transportation risk assessment is the central code in a system that contains both other codes and data libraries. Some of these codes and data libraries supply input data for RADTRAN; others perform supplemental calculations. RADTRAN 4 will be released by the IAEA in an international version known as INTERTRAN 2 in 1995. In the United States, RADTRAN 4 and its supporting system may be accessed via the INTERNET, a precursor to the Information Superhighway. Similar networks are being contemplated elsewhere in the world, and the RADTRAN System may serve as a prototype for systems on these networks. A system is desirable for the following reasons. Some classes of data and data-handling methods are country-specific and some are not -- ancillary codes and data libraries that provide the latter are not affected by national and regional borders while the former must be provided on a country-by-country basis. Making the invariant portions available to all users in an international system would simplify quality assurance (QA) and, therefore, the reliability and consistency of risk results. Among the classes of data used in RADTRAN 4 (and INTERTRAN 2) and the supplemental calculational capabilities that are essentially invariant for all countries and regions are: (1) radionuclide characteristics such as half-life, photon energy, and dose-conversion factors; (2) characteristics of radioactive-material packages found in international commerce; (3) features of highly standardized international transportation modes (primarily sea and air); and (4) uncertainty analysis. These features and their related QA benefits are discussed.
Photopumped X-ray laser research on saturn
Proceedings of SPIE - The International Society for Optical Engineering
Using Saturn as a driver, we are pursueing both photoresonantly pumped andphotoionization/recombination lasers. Our lasing targets are gas cells with thin windowsthat are pumped by a z pinch 2 cm away radiating 10 TW. In both schemes the lasant and gasfill is neon. We will present evidence for inversion in the sodium/neon photoresonantscheme but we have yet to detect the lasing transition itself. To increase our chances ofmeasuring this line we have introduced potassium into a sodium z-pinch and have eliminatedoxygen from the gas cell windows. We have measured the spatial dependence of ionizationbalance across the gas cell, and this measurement is consistent with propagation of a shockfront across the gas cell target. We have measured the Li-like neon Sf-3d transition toincrease more rapidly with fill pressure than all other measured lines. Based on this resultwe have performed experiments emphasizing the photoionization/recombination laserscheme that use a flat field grazing incidence spectrometer to provide good spatial resolutionof the 4f-3d, 4d-3p, and Sf-3d lines of Li-like neon. We have attempted a gain lengthmeasurement by imaging parallel to a baffle that varies the length of the target illuminated.
Multipurpose storage/transport/disposal packages for DOE nuclear low-level wastes: An emerging need and a regulatory challenge
As the United States embarks upon a major effort to cleanup its nuclear defense facilities, a large quantity of low-level waste (LLW) will be generated. This LLW must be managed and ultimately placed into final disposal. Much of this waste is expected to exceed certain limits defined in U.S. regulations (Title 10, U.S. Code of Federal Regulations, part 61) called Class C. The waste which exceeds Class C, called Greater-than-Class-C (GTCC), poses a major challenge to waste managers. Each GTCC waste form must be placed into costly geologic disposal unless separate approval is obtained from the United States regulator to place it into less costly {open_quotes}near-surface{close_quotes} land burial. Management of GTCC will also require, to some extent, storage and transport prior to its final disposal. A further LLW stream exists in the United States also stemming from the prior operations of United States defense facilities, viz., radioactively contaminated and irradiated scrap metal which has been accumulating over the past forty years. Similarly, as cleanup, decontamination, and decommissioning proceeds, this contaminated scrap metal inventory is expected to grow rapidly. This paper explores the notion of the authors that an opportunity for a synergistic solution to two difficult waste management problems may be available in the United States today, and perhaps may similarly be available in other nuclear countries as well. The possibility exists for fabricating packagings from contaminated scrap metal (which would otherwise be part of the waste inventory) and for using these packaging for storage, transport and disposal of GTCC in near-surface burial facilities without reopening or repacking. This approach is appealing and should lead to major safety and cost benefits. An examination of existing regulations with the intent to propose additions, changes, or clarifications that would effectively and beneficially regulate such combined activity is proposed.
Fusion welding of advanced borated stainless steels. Final report: CRADA No. CR1042
This work addressed two major areas concerning joining of advanced borated stainless steels. These areas included the development of a understanding of the physical metallurgy of borated stainless steels and the development of welding processes and post-weld heat treatments for these alloys. Differential thermal analysis experiments were conducted on ten heats of borated stainless steel to determine the transformation temperatures and melting behavior of the alloys. On-heating solidus temperatures were measured for all of the alloys and were used to define the temperatures associated with the fusion line during welding. Isothermal heat treatments designed to evaluate the effects of elevated temperature exposures on the toughness of the borated grades were conducted. These tests were used to determine if significant changes in the microstructure or mechanical properties of weld heat-affected zones (HAZ) occur. Specifically, the tests addressed the solid-state region of the HAZ. The test matrix included a variety of alloy compositions and thermal exposures at temperatures near the on-heating solidus (as determined by the DTA experiments). Welding experiments designed to assess the mechanical properties and microstructure of gas-tungsten arc and electron beam welds were conducted.
MELCOR 1.8.2 assessment: Surry PWR TMLB` (with a DCH study)
MELCOR is a fully integrated, engineering-level computer code, being developed at Sandia National Laboratories for the USNRC. This code models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRs. As part of an ongoing assessment program, the MELCOR computer code has been used to analyze a station blackout transient in Surry, a three-loop Westinghouse PWR. Basecase results obtained with MELCOR 1.8.2 are presented, and compared to earlier results for the same transient calculated using MELCOR 1.8.1. The effects of new models added in MELCOR 1.8.2 (in particular, hydrodynamic interfacial momentum exchange, core debris radial relocation and core material eutectics, CORSOR-Booth fission product release, high-pressure melt ejection and direct containment heating) are investigated individually in sensitivity studies. The progress in reducing numeric effects in MELCOR 1.8.2, compared to MELCOR 1.8.1, is evaluated in both machine-dependency and time-step studies; some remaining sources of numeric dependencies (valve cycling, material relocation and hydrogen burn) are identified.