Publications

11 Results

Search results

Jump to search filters

Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan part 2 mappings for the ASC software quality engineering practices, version 2.0

Boucheron, Edward A.; Sturtevant, Judy E.; Drake, Richard R.; Edwards, Harold C.; Forsythe, Christi A.; Heaphy, Robert T.; Hodges, Ann L.; Minana, Molly A.; Pavlakos, Constantine P.; Schofield, Joseph R.

The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR001.3.2 and CPR001.3.6 and to a Department of Energy document, ''ASCI Software Quality Engineering: Goals, Principles, and Guidelines''. This document also identifies ASC management and software project teams' responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

More Details

Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1: ASC software quality engineering practices, Version 2.0

Drake, Richard R.; Sturtevant, Judy E.; Boucheron, Edward A.; Edwards, Harold C.; Minana, Molly A.; Forsythe, Christi A.; Heaphy, Robert T.; Hodges, Ann L.; Pavlakos, Constantine P.; Schofield, Joseph R.

The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

More Details

Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan. Part 2, Mappings for the ASC software quality engineering practices. Version 1.0

Boucheron, Edward A.; Schofield, Joseph R.; Drake, Richard R.; Minana, Molly A.; Forsythe, Christi A.; Heaphy, Robert T.; Hodges, Ann L.; Pavlakos, Constantine P.; Sturtevant, Judy E.

The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, 'ASCI Software Quality Engineering: Goals, Principles, and Guidelines'. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

More Details

Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0

Boucheron, Edward A.; Schofield, Joseph R.; Drake, Richard R.; Edwards, Harold C.; Minana, Molly A.; Forsythe, Christi A.; Heaphy, Robert T.; Hodges, Ann L.; Pavlakos, Constantine P.; Sturtevant, Judy E.

The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management and software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.

More Details

Human factors in high consequence manufacturing systems

Technical Paper - Society of Manufacturing Engineers. MM

Forsythe, Christi A.

A high consequence system is often defined as one in which the potential exists for severe or catastrophic accidents. Familiar examples include nuclear power plants, airline and other mass transportation, dams and reservoirs, and large-scale food processing. Many manufacturing systems also qualify as high consequence systems. This paper discusses approaches used in hazard analysis of US nuclear weapons operations to assess risk associated with human factors.

More Details

A zooming Web browser

Forsythe, Christi A.

We are developing a prototype zooming World-Wide Web browser within Pad++, a multiscale graphical environment. Instead of having a single page visible at a time, multiple pages and the links between them are depicted on a large zoomable information surface. Pages are scaled so that the page in focus is clearly readable with connected pages shown at smaller scales to provide context. We quantitatively compared performance with the Pad++ Web browser and Netscape in several different scenarios. We examined how quickly users could answer questions about a specific Web site designed for this test. Initially we found that subjects answered questions slightly slower with Pad++ than with Netscape. After analyzing the results of this study, we implemented several changes to the Pad++ Web browser, and repeated one Pad++ condition. After improvements were made to the Pad++ browser, subjects using Pad++ answered questions 23% faster than those using Netscape.

More Details

A process for the agile product realization of electro-mechanical devices

Forsythe, Christi A.

This paper describes a product realization process developed and demonstrated at Sandia by the A-PRIMED (Agile Product Realization for Innovative Electro MEchanical Devices) project that integrates many of the key components of ``agile manufacturing`` into a complete, design-to-production process. Evidence indicates that the process has reduced the product realization cycle and assured product quality. Products included discriminators for a robotic quick change adapter and for an electronic defense system. These discriminators, built using A-PRIMED, met random vibration requirements and had life cycles that far surpass the performance obtained from earlier efforts.

More Details

Ramping up for agility: Development of a concurrent engineering communications infrastructure

Forsythe, Christi A.

A-PRIMED (Agile Product Realization for Innovative Electro MEchanical Devices) demonstrated new product development in24 days accompanied by improved product quality, through ability enabling technologies. A concurrent engineering communications infrastructure was developed that provided electronic data communications, information access, enterprise integration of computers and applications, and collaborative work tools. This paper describes how A-PRIMED did it through attention to technologies, processes, and people.

More Details

Developing communications requirements for Agile Product Realization

Forsythe, Christi A.

Sandia National Laboratories has undertaken the Agile Product Realization for Innovative electroMEchanical Devices (A-PRIMED) pilot project to develop and implement technologies for agile design and manufacturing of electrochemical components. Emphasis on information-driven processes, concurrent engineering and multi-functional team communications makes computer-supported cooperative work critical to achieving significantly faster product development cycles. This report describes analyses conducted in developing communications requirements and a communications plan that addresses the unique communications demands of an agile enterprise.

More Details
11 Results
11 Results