Publications

11 Results

Search results

Jump to search filters

Aspiration tests in aqueous foam using a breathing simulator

Archuleta, Melecita M.

Non-toxic aqueous foams are being developed by Sandia National Laboratories (SNL) for the National Institute of Justice (NIJ) for use in crowd control, cell extractions, and group disturbances in the criminal justice prison systems. The potential for aspiration of aqueous foam during its use and the resulting adverse effects associated with complete immersion in aqueous foam is of major concern to the NIJ when examining the effectiveness and safety of using this technology as a Less-Than-Lethal weapon. This preliminary study was designed to evaluate the maximum quantity of foam that might be aspirated by an individual following total immersion in an SNL-developed aqueous foam. A.T.W. Reed Breathing simulator equipped with a 622 Silverman cam was used to simulate the aspiration of an ammonium laureth sulfate aqueous foam developed by SNL and generated at expansion ratios in the range of 500:1 to 1000:1. Although the natural instinct of an individual immersed in foam is to cover their nose and mouth with a hand or cloth, thus breaking the bubbles and decreasing the potential for aspiration, this study was performed to examine a worst case scenario where mouth breathing only was examined, and no attempt was made to block foam entry into the breathing port. Two breathing rates were examined: one that simulated a sedentary individual with a mean breathing rate of 6.27 breaths/minute, and one that simulated an agitated or heavily breathing individual with a mean breathing rate of 23.7 breaths/minute. The results of this study indicate that, if breathing in aqueous foam without movement, an air pocket forms around the nose and mouth within one minute of immersion.

More Details

Aqueous foam toxicology evaluation and hazard review

Archuleta, Melecita M.

Aqueous foams are aggregates of bubbles mechanically generated by passing air or other gases through a net, screen, or other porous medium that is wetted by an aqueous solution of surface-active foaming agents (surfactants). Aqueous foams are important in modem fire-fighting technology, as well as for military uses for area denial and riot or crowd control. An aqueous foam is currently being developed and evaluated by Sandia National Laboratories (SNL) as a Less-Than-Lethal Weapon for the National Institute of Justice (NIJ). The purpose of this study is to evaluate the toxicity of the aqueous foam developed for the NIJ and to determine whether there are any significant adverse health effects associated with completely immersing individuals without protective equipment in the foam. The toxicity of the aqueous foam formulation developed for NIJ is determined by evaluating the toxicity of the individual components of the foam. The foam is made from a 2--5% solution of Steol CA-330 surfactant in water generated at expansion ratios ranging from 500:1 to 1000:1. SteoI CA-330 is a 35% ammonium laureth sulfate in water and is produced by Stepan Chemical Company and containing trace amounts (<0.1%) of 1,4-dioxane. The results of this study indicate that Steol CA-330 is a non-toxic, mildly irritating, surfactant that is used extensively in the cosmetics industry for hair care and bath products. Inhalation or dermal exposure to this material in aqueous foam is not expected to produce significant irritation or systemic toxicity to exposed individuals, even after prolonged exposure. The amount of 1,4-dioxane in the surfactant, and subsequently in the foam, is negligible and therefore, the toxicity associated with dioxane exposure is not significant. In general, immersion in similar aqueous foams has not resulted in acute, immediately life-threatening effects, or chronic, long-term, non-reversible effects following exposure.

More Details

Oleoresin Capsicum toxicology evaluation and hazard review

Archuleta, Melecita M.

Oleoresin Capsicum (OC) is an extract of the pepper plant used for centuries as a culinary spice (hot peppers). This material has been identified as a safe and effective Less-Than- Lethal weapon for use by Law enforcement and security professionals against assault. The National Institute of Justice (NIJ) is currently also evaluating its use in conjunction with other Less-Than-Lethal agents such as aqueous foam for use in corrections applications. Therefore, a comprehensive toxicological review of the literature was performed for the National Institute of Justice Less-Than-Lethal Force program to review and update the information available on the toxicity and adverse health effects associated with OC exposure. The results of this evaluation indicate that exposure to OC can result in dermatitis, as well as adverse nasal, pulmonary, and gastrointestinal effects in humans. The primary effects of OC exposure include pain and irritation of the mucous membranes of the eyes, nose, and lining of the mouth. Blistering and rash have been shown to occur after chronic or prolonged dermal exposure. Ingestion of capsicum may cause acute stinging of the lips, tongue, and oral mucosa and may lead to vomiting and diarrhea with large doses. OC vapors may also cause significant pulmonary irritation and prolonged cough. There is no evidence of long term effects associated with an acute exposure to OC, and extensive use as a culinary additive and medicinal ointment has further provided no evidence of long term adverse effects following repeated or prolonged exposure.

More Details

Toxicity evaluation and hazard review for Rigid Foam

Archuleta, Melecita M.

Rigid Foam is a chemical delay foam used to completely encapsulate an object or to block access to an area. Prior studies have indicated that the final foam product is essentially non-toxic. The purpose of this study was to evaluate and summarize the current chemical and toxicological data available on the components of Rigid Foam and to update the information available on the toxicity of the final Rigid Foam product. Since the possibility exists for a partial deployment of Rigid Foam where only one of the components is released, this study also examined the toxicity of its chemical constituents. Rigid Foam is composed of an {open_quotes}A{close_quotes} and {open_quotes}B{close_quotes} Component. The {open_quotes}A{close_quotes} component is primarily a polymeric isocyanate and the {open_quotes}B{close_quotes} component is a mixture of polyols. In addition to the primary constituents, dichlorodifluoromethane and trichlorofluoromethane are present as blowing agents along with catalysts and silicone surfactants necessary for foaming. The pre-deployed {open_quotes}A{close_quotes} and {open_quotes}B{close_quotes} components are stored in separate vessels and are brought together in static mixing nozzles for dispersal. The results of this evaluation indicate that a completely deployed Rigid Foam under normal conditions is essentially non-toxic as determined previously. However, in the event of a partial deployment or deployment of an individual component directly at an unprotected individual, the degree of hazard is increased due to the toxic and corrosive nature of the individual constituents. The health hazard would depend on the properties of the material to which the person was exposed.

More Details

Toxicity evaluation and hazard review Cold Smoke

Archuleta, Melecita M.

Cold Smoke is a dense white smoke produced by the reaction of titanium tetrachloride and aqueous ammonia aerosols. Early studies on the toxicity of this nonpyrotechnically generated smoke indicated that the smoke itself is essentially non-toxic (i.e. exhibits to systemic toxicity or organ damage due to exposure) under normal deployment conditions. The purpose of this evaluation was to review and summarize the recent literature data available on the toxicity of Cold Smoke, its chemical constituents, and its starting materials.

More Details

DMBA induces tyrosine phosphorylation of PLC-{gamma}1 and activates the tyrosine kinases lck and fyn in the HPB-ALL human T-cell line

Archuleta, Melecita M.

Previous studies in this laboratory have demonstrated that DMBA alters biochemical events associated with lymphocyte activation including formation of the second messenger IP{sub 3} and the release of intracellular Ca{sup 2+}. The purpose of the present studies was to evaluate the mechanisms by which DMBA induces IP{sub 3} formation and Ca{sup 2+} release by examining phosphorylation of membrane associated proteins and activation of protein tyrosine kinases lck and fyn. These studies demonstrated that exposure of HPB-ALL cells to 10{mu}M DMBA resulted in a time- and dose-dependent increase in tyrosine phosphorylation of PLC-{gamma}1 that correlated with our earlier findings of IP{sub 3} formation and Ca{sup 2+} release. These results indicate that the effects of DMBA on the PI-PLC signaling pathway are in part, the result of DMBA-induced tyrosine phosphorylation of the PLC-{gamma}1 enzyme. The mechanism of DMBA- induced tyrosine phosphorylation of PLC-{gamma}1 may be due to activation of fyn or lck kinase activity, since it was found that DMBA increased the activity of these PTKs by more than 2-fold. Therefore, these studies demonstrate that DMBA may disrupt T cell activation by stimulating PTK activation with concomitant tyrosine phosphorylation of PLC-{gamma}1, release of IP{sub 3}, and mobilization of intracellular Ca{sup 2+}.

More Details
11 Results
11 Results