A method is developed for reliability analysis of dynamic systems under limited information. The available information includes one or more samples of the system output; any known information on features of the output can be used if available. The method is based on the theory of non-Gaussian translation processes and is shown to be particularly suitable for problems of practical interest. For illustration, we apply the proposed method to a series of simple example problems and compare with results given by traditional statistical estimators in order to establish the accuracy of the method. It is demonstrated that the method delivers accurate results for the case of linear and nonlinear dynamic systems, and can be applied to analyze experimental data and/or mathematical model outputs. Two complex applications of direct interest to Sandia are also considered. First, we apply the proposed method to assess design reliability of a MEMS inertial switch. Second, we consider re-entry body (RB) component vibration response during normal re-entry, where the objective is to estimate the time-dependent probability of component failure. This last application is directly relevant to re-entry random vibration analysis at Sandia, and may provide insights on test-based and/or model-based qualification of weapon components for random vibration environments.
Many applications in micromechanical systems (MEMS) involve electrostatically actuated parts. Arpeggio is a code for facilitating loose coupling between computational mechanics modules in a parallel computing environment. This document describes how to use Arpeggio for coupled elecromechanical analyses using examples commonly encountered in MEMS applications, namely the response of structures to loads imposed by electrostatic fields. For this type of analysis, Arpeggio is used to couple Adagio, a three dimensional finite element code for nonlinear, quasi static or implicit dynamic analysis of three-dimensional structures, with BEM, a boundary integral method code for the analysis of electrostatic fields. This guide describes the methodology used for the loose coupling and the commands the user needs in an input file to perform such an analysis. All commands related to coupled analyses are described and examples are provided.
Using molecular dynamics simulations, a constitutive model for the chemical aging of polymer networks was developed. This model incorporates the effects on the stress from the chemical crosslinks and the physical entanglements. The independent network hypothesis has been modified to account for the stress transfer between networks due to crosslinking and scission in strained states. This model was implemented in the finite element code Adagio and validated through comparison with experiment. Stress relaxation data was used to deduce crosslinking history and the resulting history was used to predict permanent set. The permanent set predictions agree quantitatively with experiment.
An ongoing program of research and development is utilizing nanomaterials as a basis for observing and measuring neurophysiological processes. Work commencing in fiscal year 2007 will focus on expanding current capabilities to create nanoelectrode arrays that will allow nanoscale measurement of the activity of 10's to 100's of neurons. This development is a vital step in gaining scientific insights concerning network properties associated with neural representations and processes. Specifically, attention will be focused the representation of memory in the hippocampus, for which extensive research has been conducted using laboratory rats. This report summarizes background research providing a foundation for work planned for fiscal year 2007 and beyond. In particular, the neuroanatomy and neurophysiology of the hippocampus is described. Additionally, several programs of research are described that have addressed the relationship between neurophysiological processes and behavioral measures of memory performance. These studies provide insight into methodological and analytic approaches for studying the representation of memory processes in the hippocampus. The objective of this report is to document relevant literature in a reference document that will support future research in this area.
Integrating technology readiness levels (TRL) into the management of engineering projects is critical to the mitigation of risk and improved customer/supplier communications. TRLs provide a common framework and language with which consistent comparisons of different technologies and approaches can be made. At Sandia National Laboratories, where technologies are developed, integrated and deployed into high consequence systems, the use of TRLs may be transformational. They are technology independent and span the full range of technology development including scientific and applied research, identification of customer requirements, modeling and simulation, identification of environments, testing and integration. With this report, we provide a reference set of definitions for TRLs and a brief history of TRLs at Sandia National Laboratories. We then propose and describe two approaches that may be used to integrate TRLs into the NW SMU business practices. In the first approach, we analyze how TRLs can be integrated within concurrent qualification as documented in TBP-100 [1]. In the second approach we take a look at the product realization process (PRP) as documented in TBP-PRP [2]. Both concurrent qualification and product realization are fundamental to the way weapons engineering work is conducted at this laboratory and the NWC (nuclear weapons complex) as a whole. Given the current structure and definitions laid out in the TBP-100 and TBP-PRP, we believe that integrating TRLs into concurrent qualification (TBP-100) rather than TBP-PRP is optimal. Finally, we note that our charter was to explore and develop ways of integrating TRLs into the NW SMU and therefore we do not significantly cover the development and history of TRLs. This work was executed under the auspices and direction of Sandia's Weapon Engineering Program. Please contact Gerry Sleefe, Deputy Program Director, for further information.
Risk from an act of terrorism is a combination of the likelihood of an attack, the likelihood of success of the attack, and the consequences of the attack. The considerable epistemic uncertainty in each of these three factors can be addressed using the belief/plausibility measure of uncertainty from the Dempster/Shafer theory of evidence. The adversary determines the likelihood of the attack. The success of the attack and the consequences of the attack are determined by the security system and mitigation measures put in place by the defender. This report documents a process for evaluating risk of terrorist acts using an adversary/defender model with belief/plausibility as the measure of uncertainty. Also, the adversary model is a linguistic model that applies belief/plausibility to fuzzy sets used in an approximate reasoning rule base.
The purpose of this work was to develop a conceptual design for the Saturn accelerator using the modular Liner-Transformer Driver (LTD) technology to identify risks and to focus development and research for this new technology. We present a reference design for a Saturn class driver based on a number of linear inductive voltage adders connected in parallel. This design is very similar to a design reported five years ago [1]. However, with the design reported here we use 1-MA, 100-kV LTD cavities as building blocks. These cavities have already been built and are currently in operation at the HCEI in Tomsk, Russia [2]. Therefore, this new design integrates already-proven individual components into a full system design.
Wideband radar signals are problematic for phased array antennas. Wideband radar signals can be generated from series or groups of narrow-band signals centered at different frequencies. An equivalent wideband LFM chirp can be assembled from lesser-bandwidth chirp segments in the data processing. The chirp segments can be transmitted as separate narrow-band pulses, each with their own steering phase operation. This overcomes the problematic dilemma of steering wideband chirps with phase shifters alone, that is, without true time-delay elements.
Nonlinear FM waveforms offer a radar matched filter output with inherently low range sidelobes. This yields a 1-2 dB advantage in Signal-to-Noise Ratio over the output of a Linear FM waveform with equivalent sidelobe filtering. This report presents design and implementation techniques for Nonlinear FM waveforms.
The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR001.3.2 and CPR001.3.6 and to a Department of Energy document, ''ASCI Software Quality Engineering: Goals, Principles, and Guidelines''. This document also identifies ASC management and software project teams' responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.
The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.
This report describes the continued development of a low-power, portable detector for the rapid identification of pathogens such as B. anthracis and smallpox. Based on our successful demonstration of the continuous filter/concentrator inlet, we believe strongly that the inlet section will enable differentiation between viable and non-viable populations, between types of cells, and between pathogens and background contamination. Selective, continuous focusing of particles in a microstream enables highly selective and sensitive identification using fluorescently labeled antibodies and other receptors such as peptides, aptamers, or small ligands to minimize false positives. Processes such as mixing and lysing will also benefit from the highly localized particle streams. The concentrator is based on faceted prisms to contract microfluidic flows while maintaining uniform flowfields. The resulting interfaces, capable of high throughput, serve as high-, low-, and band-pass filters to direct selected bioparticles to a rapid, affinity-based detection system. The proposed device is superior to existing array-based detectors as antibody-pathogen binding can be accomplished in seconds rather than tens of minutes or even hours. The system is being designed to interface with aerosol collectors under development by the National Laboratories or commercial systems. The focused stream is designed to be interrogated using diode lasers to differentiate pathogens by light scattering. Identification of particles is done using fluorescently labeled antibodies to tag the particles, followed by multiplexed laser-induced fluorescence (LIF) detection (achieved by labeling each antibody with a different dye).
The Space Shuttle Program requires on-orbit inspection of the thermal protection system which covers the Orbiter spacecraft, including the critical leading-edge surfaces. A scannerless ladar system mounted on a 50-foot boom extension of the robotic arm provides this capability. This paper describes the sensor and ground processing system, which were developed by Sandia National Laboratories to meet the requirements of the Return to Flight mission in July of 2005. Mission operations for this sensor system are also reviewed.
While the chief cause of defocus in airborne spotlight-mode imagery is uncompensated errors in the measurement of the aircraft position as it traverses the synthetic aperture, another physical phenomenon can cause blurring in the formed SAR image as well. This is the injection of phase errors into the collected SAR phase history data by random fluctuations in the index of refraction as the microwave pulses propagate through an atmosphere that contains irregularities in the tropospheric water vapor distribution. In this paper, we show that in SAR imagery collected under certain conditions, these phase errors can be detected and corrected using a robust autofocus algorithm such as Phase Gradient Autofocus (PGA). The phase errors are confirmed as having been propagation-induced by demonstrating that they exhibit a power-law spectrum described by Tatarski, based on the turbulence model of Kolmogorov.
The convolution/back-projection (CBP) algorithm has recently once again been touted as the "gold standard" for spotlight-mode SAR image formation, as it is proclaimed to achieve better image quality than the well-known and often employed polar formatting algorithm (PFA) 1. In addition, it has been suggested that PFA is less flexible than CBP in that PFA can only compute the SAR image on one grid and PFA cannot add or subtract pulses from the imaging process. The argument for CBP acknowledges the computational burden of CBP compared to PFA, but asserts that the increased image accuracy and flexibility of the formation process is warranted, at least in some imaging scenarios. Because CBP can now be sped up by the proper algorithm design, it becomes, according to this line of analysis, the clear algorithm of choice for SAR image formation. In this paper we reject the above conclusion by showing that PFA and CBP achieve the same image quality, and that PFA has complete flexibility, including choice of imaging plane, size of illuminated beam area to be imaged, resolution of the image, and others. We demonstrate these claims via formation of both simulated and real SAR imagery using both algorithms.
We have developed a new, high performance, hyperspectral microscope for biological and other applications. For each voxel within a three-dimensional specimen, the microscope simultaneously records the emission spectrum from 500 nm to 800 nm, with better than 3 nm spectral resolution. The microscope features a fully confocal design to ensure high spatial resolution and high quality optical sectioning. Optical throughput and detection efficiency are maximized through the use of a custom prism spectrometer and a backside thinned electron multiplying charge coupled device (EMCCD) array. A custom readout mode and synchronization scheme enable 512-point spectra to be recorded at a rate of 8300 spectra per second. In addition, the EMCCD readout mode eliminates curvature and keystone artifacts that often plague spectral imaging systems. The architecture of the new microscope is described in detail, and hyperspectral images from several specimens are presented.
A new formulation of configurational-bias Monte Carlo that uses arbitrary distributions to generate trial bond lengths, angles and dihedrals is described and shown to provide similar acceptance rates with substantially less computational effort. Several different trial distributions are studied and a linear combination of the ideal distribution plus Gaussian distributions automatically fit to the energetic and ideal terms is found to give the best results. The use of these arbitrary trial distributions enables a new formulation of coupled-decoupled configurational bias Monte Carlo that has significantly higher acceptance rates for cyclic molecules. The chemical potential measured via a modified Widom insertion is found to be ill-defined in the case of a molecule that has flexible bond lengths due to the unbounded probability distribution that describes the distance between any two atoms. We propose a simple standard state that allows the computation of consistent chemical potentials for molecules with flexible bonds. We show that the chemical potential via Widom insertion is not computed properly for molecules with Coulombic interactions when the number of trials for any of the nonbonded selection steps is greater than one. Finally, we demonstrate the power of the new algorithms by sampling the side-chain conformations of a polypeptide.