Publications

12 Results

Search results

Jump to search filters

Consequences and benefits of utilizing continuous vibro-impact representations in constrained pipeline conveying fluid systems

Nonlinear Dynamics

Alvis, Timothy A.; Saunders, Brian E.; Abdelkefi, Abdessattar

Here, the effectiveness of continuous vibro-impact forcing representations for the cantilevered pipe that conveys fluid is explored and analyzed. The previously accepted forcing model utilizing a smoothened trilinear spring is estimated using three continuous forcing representations, namely, polynomial, rational polynomial, and hyperbolic tangent. The accuracy of the estimated forcing functions is investigated and analyzed by calculating the root mean square error, and bifurcation diagrams are generated and compared to the nominal system. Additionally, the dynamic response of the system is further characterized using Poincare maps, power spectra, and basins of attraction. Once all continuous forcing representations are analyzed and compared to the nominal system, the computational cost of each method is examined, and further limitations of the hyperbolic tangent method are discovered. It is proved that the hyperbolic tangent forcing representation most accurately captures the dynamic response of the pipeline, and the least accurate representation is the rational polynomial representation. Additionally, considerable computational cost is saved when employing the hyperbolic tangent representation compared to the discontinuous representation.

More Details

Dynamical responses of constrained pipe conveying fluids and its dependence on the modeling of the contact force

International Journal of Non-Linear Mechanics

Alvis, Timothy A.; Saunders, Brian E.; Abdelkefi, Abdessattar

Accurately modeling the impact force used in the analysis of loosely constrained cantilevered pipes conveying fluid is imperative. If little information is known of the motion-limiting constraints used in experiments, the analysis of the system may yield inaccurate predictions. Here in this work, multiple forcing representations of the impact force are defined and analyzed for a cantilevered pipe that conveys fluid. Depending on the representation of the impact force, the dynamics of the pipe can vary greatly when only the stiffness of the constraints is known from experiments. Three gap sizes of the constraints are analyzed, and the representation of the impact force used to analyze the system is found to significantly affect the response of the pipe at each gap size. An investigation on the effects of the vibro-impact force representation is performed through using basin of attraction analysis and nonlinear characterization of the system’s response.

More Details

Sensitive parameter identification and uncertainty quantification for the stability of pipeline conveying fluid

International journal of mechanics and materials in design

Alvis, Timothy A.; Ceballes, Samantha; Abdelkefi, Abdessattar

In this study, several uncertainty quantification and sensitivity analysis methods are used to determine the most sensitive geometric and material input parameters of a cantilevered pipeline conveying fluid when uncertainty is introduced to the system at the onset of instability. The full nonlinear equations of motion are modeled using the extended Hamilton’s principle and then discretized using Galerkin’s method. A parametric study is first performed, and the Morris elementary effects are calculated to obtain a preliminary understanding of how the onset speed changes when each parameter is introduced to a ± 5% uncertainty. Then, four different input uncertainty distributions, mainly, uniform and Gaussian distribution, are chosen to investigate how input distributions affect uncertainty in the output. A convergence analysis is used to determine the number of samples needed to maintain simulation accuracy while saving the most computational time. Then, Monte Carlo simulations are run, and the output distributions for each input distribution at ± 1%, ± 3% and ± 5% input uncertainty range are found and discussed. Additionally, the Pearson correlation coefficients are evaluated for different uncertainty ranges. A final Monte Carlo study is performed in which single parameters are held constant while all others still have uncertainty. Overall, the flow speed at the onset of instability is the most sensitive to changes in the outer diameter of the pipe.

More Details

Multimode Metastructures: Novel Hybrid 3D Lattice Topologies

Boyce, Brad B.; Garland, Anthony G.; White, Benjamin C.; Jared, Bradley H.; Conway, Kaitlynn; Adstedt, Katerina; Dingreville, Remi P.; Robbins, Joshua R.; Walsh, Timothy W.; Alvis, Timothy A.; Branch, Brittany A.; Kaehr, Bryan J.; Kunka, Cody; Leathe, Nicholas L.

With the rapid proliferation of additive manufacturing and 3D printing technologies, architected cellular solids including truss-like 3D lattice topologies offer the opportunity to program the effective material response through topological design at the mesoscale. The present report summarizes several of the key findings from a 3-year Laboratory Directed Research and Development Program. The program set out to explore novel lattice topologies that can be designed to control, redirect, or dissipate energy from one or multiple insult environments relevant to Sandia missions, including crush, shock/impact, vibration, thermal, etc. In the first 4 sections, we document four novel lattice topologies stemming from this study: coulombic lattices, multi-morphology lattices, interpenetrating lattices, and pore-modified gyroid cellular solids, each with unique properties that had not been achieved by existing cellular/lattice metamaterials. The fifth section explores how unintentional lattice imperfections stemming from the manufacturing process, primarily sur face roughness in the case of laser powder bed fusion, serve to cause stochastic response but that in some cases such as elastic response the stochastic behavior is homogenized through the adoption of lattices. In the sixth section we explore a novel neural network screening process that allows such stocastic variability to be predicted. In the last three sections, we explore considerations of computational design of lattices. Specifically, in section 7 using a novel generative optimization scheme to design novel pareto-optimal lattices for multi-objective environments. In section 8, we use computational design to optimize a metallic lattice structure to absorb impact energy for a 1000 ft/s impact. And in section 9, we develop a modified micromorphic continuum model to solve wave propagation problems in lattices efficiently.

More Details
12 Results
12 Results