Inertial confinement fusion - Experimental physics: Z-pinch and magnetized liner inertial fusion
Encyclopedia of Nuclear Energy
Abstract not provided.
Encyclopedia of Nuclear Energy
Abstract not provided.
Physics of Plasmas
MagLIF experiments [M.R. Gomez et al., Phys. Plasmas 22, 056306 (2015)] on Z have demonstrated the basic principles of Magneto-Inertial Fusion (MIF) for wall confined plasmas. Other MIF schemes have been proposed based on the liner implosion of closed field magnetically confined plasmas such as Field Reversed Configurations (FRCs) [T. P. Intrator et al., Phys. Plasmas 15, 042505 (2008)]. We present a semi-analytical model of liner driven FRC implosions that predicts the fusion gain of such systems. The model predicts a fusion gain near unity for an FRC imploded by a liner driven by the Z Machine. We show that FRCs could be formed and imploded at the Z facility using the AutoMag liner concept [S. A. Slutz et al., Phys. Plasmas 24, 012704 (2017)]. An initial bias magnetic field can be supplied by the external magnets used in MagLIF experiments. The reverse field is then supplied by an AutoMag liner, which has helical conducting paths imbedded in an insulating substance. Experiments [Shipley et al., Phys. Plasmas 26, 052705 (2019)] have demonstrated that AutoMag can generate magnetic fields greater than 30 Tesla inside of the liner. We have performed 2D Radiation MHD simulations of the formation and implosion of an FRC, which are in good agreement with the analytical model. The FRC formation process could be studied on small pulsed power machines delivering about 1 MA.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Letters
We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burn-averaged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1×1013 (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Review of Scientific Instruments
Magnetized Liner Inertial Fusion (MagLIF) at Sandia National Laboratories involves a laser preheating stage where a few-ns laser pulse passes through a few-micron-thick plastic window to preheat gaseous fusion fuel contained within the MagLIF target. Interactions with this window reduce heating efficiency and mix window and target materials into the fuel. A recently proposed idea called "Laser Gate"involves removing the window well before the preheating laser is applied. In this article, we present experimental proof-of-principle results for a pulsed-power implementation of Laser Gate, where a thin current-carrying wire weakens the perimeter of the window, allowing the fuel pressure to push the window open and away from the preheating laser path. For this effort, transparent targets were fabricated and a test facility capable of studying this version of Laser Gate was developed. A 12-frame bright-field laser schlieren/shadowgraphy imaging system captured the window opening dynamics on microsecond timescales. The images reveal that the window remains largely intact as it opens and detaches from the target. A column of escaping pressurized gas appears to prevent the detached window from inadvertently moving into the preheating laser path.
Abstract not provided.
Inertial Fusion is being supported by the NNSA for weapon physics and, although net gain has not yet been attained, significant progress has been made. National Ignition Facility (NIF) capsules have attained fusion gain within the fuel. MagLIF, which is presently being studied at the Z facility, has demonstrated the basic principles of Magneto-Inertial Fusion (MIF), which may provide an alternative path to fusion. Despite these successes there is presently no effort to determine if inertial fusion can be used to generate electrical energy. It would be prudent to have a small program directed to the application of inertial fusion for energy (IFE). This program would not have the same goals as the NNSA and should thus be funded by OFES.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.