Publications

Results 1–50 of 208

Search results

Jump to search filters

MRT 7365: Power flow physics and key physics phenomena

Bennett, Nichelle L.; Lamppa, Derek C.; Porwitzky, Andrew J.; Jennings, Christopher A.; Evstatiev, Evstati G.; Chandler, Katherine M.; Banasek, Jacob T.; Patel, Sonal G.; Yager-Elorriaga, David A.; Savage, Mark E.; Johnston, Mark D.; Hess, Mark H.; Cuneo, Michael E.; Welch, Dale; Rose, David; Watson, Eric; Myers, Clayton

The Z accelerator at Sandia National Laboratories conducts z-pinch experiments at 26 MA in support of DOE missions in stockpile stewardship, dynamic materials, fusion, and other basic sciences. Increasing the current delivered to the z-pinch would extend our reach in each of these disciplines. To achieve increases in current and accelerator efficiency, a fraction of Z’s shots are set aside for research into transmission-line power flow. These shots, with supporting simulations and theory, are incorporated into this Advanced Diagnostics milestone report. The efficiency of Z is reduced as some portion of the total current is shunted across the transmission-line gaps prior to the load. This is referred to as “current loss”. Electrode plasmas have long been implicated in this process, so the bulk of dedicated power-flow experiments are designed to measure the plasma environment. The experimental analyses are enhanced by simulations conducted using realistic hardware and Z voltage pulses. In the same way that diagnostics are continually being improved for sensitivity and resolution, the modeling capability is continually being improved to provide faster and more realistic simulations. The specifics of the experimental hardware, diagnostics, simulations, and algorithm developments are provided in this report. The combined analysis of simulation and data confirms that electrode plasmas have the most detrimental impact on current delivery. Experiments over the last three years have tested the theoretical current-loss mechanisms of enhanced ion current, plasma gap closure, and Hall-related current. These mechanisms are not mutually exclusive and may be coincident in the final feed as well as in upstream transmission lines. The final-feed geometries tested here, however, observe lower-density plasmas without dominant ion currents which is consistent with a Hall-related current. The picture of plasma formation and transport formed from experiment and simulation is informing hardware designs being fielded on Z now and being proposed for the Next-Generation Pulsed Power (NGPP) facility. In this picture, the strong magnetic fields that heat the electrodes above particle emission thresholds also confine the charged particles near the surface. Some portion of the plasmas thus formed is transported into the transmission-line gap under the force of the electric field, with aid from plasma instabilities. The gap plasmas are then transported towards the load by a cross-field drift, where they accumulate and contribute to a likely Hall-related cross-gap current. The achievements in experimental execution, model validation, and physical analysis presented in this report set the stage for continued progress in power flow and load diagnostics on Z. The planned shot schedule for Z and Mykonos will provide data for extrapolation to higher current to ensure the predicted performance and efficiency of a NGPP facility.

More Details

Design and Comissioning of Vulcan - A testbed for fast Marx generator and vacuum insulator development

IEEE International Pulsed Power Conference

Hutsel, Brian T.; Stoltzfus, Brian; Savage, Mark E.; Johns, Owen; Breden, Eric W.; Sullivan, Michael A.

Vulcan is a new pulsed power system at Sandia National Laboratories based on fast Marx technology. Vulcan will serve as an intermediate scale demonstration of a fast Marx system and as a testbed for vacuum insulator testing. Vulcan uses multiple parallel fast Marxes, in a layout we call a Fast Marx Array (FMA), and a pulse forming line (PFL) to generate pulses up to 5 MV with effective pulse lengths for vacuum insulator testing that are relevant to larger facilities like Z. Vulcan consists of two parallel 25 stage Marxes with a total stored energy of up to 20 kJ. Vulcan applies up to 5 MV to a vacuum insulator stack load, thereby enabling testing of large area insulator stacks with areas on the order of 1000 cm2. The PFL design includes an oil output switch to adjust the voltage stress duration applied to the vacuum insulator. We will discuss Vulcan's design, including the FMA, Marx trigger generator, energy diverter, PFL, oil output switch, and results of initial commissioning experiments.

More Details

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Nuclear Fusion

Yager-Elorriaga, David A.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Weis, Matthew R.; Weisy; Awe, Thomas J.; Chandler, Gordon A.; Myers, Clayton; Fein, Jeffrey R.; Galloway, Benjamin R.; Geissel, Matthias; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Foulk, James W.; Rambo, Patrick K.; Robertson, G.K.; Savage, Mark E.; Shipley, Gabriel A.; Schwarz, Jens; Ampleford, David J.; Beckwith, Kristian; Peterson, K.J.; Porter, John L.; Rochau, G.A.

We present an overview of the magneto-inertial fusion (MIF) concept MagLIF (Magnetized Liner Inertial Fusion) pursued at Sandia National Laboratories and review some of the most prominent results since the initial experiments in 2013. In MagLIF, a centimeter-scale beryllium tube or "liner" is filled with a fusion fuel, axially pre-magnetized, laser pre-heated, and finally imploded using up to 20 MA from the Z machine. All of these elements are necessary to generate a thermonuclear plasma: laser preheating raises the initial temperature of the fuel, the electrical current implodes the liner and quasi-adiabatically compresses the fuel via the Lorentz force, and the axial magnetic field limits thermal conduction from the hot plasma to the cold liner walls during the implosion. MagLIF is the first MIF concept to demonstrate fusion relevant temperatures, significant fusion production (>10^13 primary DD neutron yield), and magnetic trapping of charged fusion particles. On a 60 MA next-generation pulsed-power machine, two-dimensional simulations suggest that MagLIF has the potential to generate multi-MJ yields with significant self-heating, a long-term goal of the US Stockpile Stewardship Program. At currents exceeding 65 MA, the high gains required for fusion energy could be achievable.

More Details

Fielding and analyzing performance of a prototype high voltage output gas switch for Saturn

Savage, Mark E.; Austin, Kevin N.; Grabowski, Theodore C.; Mclane, Matthew

Timing spread between the thirty-six Saturn modules affects peak electrical power delivered to the Bremsstrahlung diode and can affect vacuum power flow and impedance behavior of the load. To reduce the module spread, a new megavolt gas-insulated closing switch was developed employing design techniques developed for the Z-machine laser triggered switches while retaining Saturn’s simpler electrical triggering. Two modules were temporarily outfitted with the new switches and used separately into local resistive loads (instead of the usual Saturn electron beam load). A reliable operating point and switch time jitter at that point were the goals of the experiments. The target switch reliability is less than one pre-fire in one thousand switch-shots, and a timing standard deviation of 4 nanoseconds. The switches were able to meet both requirements but the number of tests at the chosen point are limited.

More Details

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Yager-Elorriaga, David A.; Gomez, Matthew R.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Knapp, P.F.; Schmit, Paul; Weis, Matthew R.; Awe, Thomas J.; Chandler, Gordon A.; Mangan, Michael A.; Myers, Clayton; Fein, Jeffrey R.; Geissel, Matthias; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Webster, Evelyn; Rambo, Patrick K.; Robertson, G.K.; Savage, Mark E.; Smith, Ian C.; Ampleford, David J.; Beckwith, Kristian; Peterson, Kara J.; Porter, John L.; Rochau, G.A.; Sinars, Daniel

Abstract not provided.

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Yager-Elorriaga, David A.; Gomez, Matthew R.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Weis, Matthew R.; Awe, Thomas J.; Chandler, Gordon A.; Myers, Clayton; Fein, Jeffrey R.; Geissel, Matthias; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Foulk, James W.; Robertson, G.K.; Savage, Mark E.; Ampleford, David J.; Beckwith, Kristian; Peterson, K.J.; Porter, John L.; Rochau, G.A.

Abstract not provided.

Performance Scaling in Magnetized Liner Inertial Fusion Experiments

Physical Review Letters

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Ampleford, David J.; Weis, Matthew R.; Myers, Clayton; Yager-Elorriaga, David A.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Lamppa, Derek C.; Mangan, Michael A.; Knapp, P.F.; Awe, Thomas J.; Chandler, Gordon A.; Cooper, Gary; Fein, Jeffrey R.; Geissel, Matthias; Glinsky, Michael E.; Foulk, James W.; Ruiz, C.L.; Ruiz, Daniel E.; Savage, Mark E.; Schmit, Paul; Smith, Ian C.; Styron, J.D.; Porter, John L.; Jones, Brent M.; Mattsson, Thomas; Peterson, K.J.; Rochau, G.A.; Sinars, Daniel

We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burn-averaged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1×1013 (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.

More Details

EXPERIMENTAL RESULTS FROM THE 1.2 MA 2.2 m DIAMETER LINEAR TRANSFORMER DRIVER AT SANDIA NATIONAL LABS

Douglass, Jonathan; Hutsel, Brian T.; Leckbee, Joshua J.; Stoltzfus, Brian S.; Wisher, Matthew L.; Savage, Mark E.; Stygar, William A.; Breden, Eric W.; Calhoun, Jacob D.; Cuneo, Michael E.; Jaramillo, Deanna M.; Johns, Owen; Jones, Michael; Lucero, Diego; Moore, James M.; Sceiford, M.E.; Kiefer, Mark L.; Mulville, Thomas D.; Sullivan, Michael A.; Hohlfelder, Robert J.

Abstract not provided.

100 GW linear transformer driver cavity: Design, simulations, and performance 100 GW LINEAR TRANSFORMER DRIVER CAVITY: ⋯ J. D. DOUGLASS et al

Physical Review Accelerators and Beams

Douglass, Jonathan; Hutsel, Brian T.; Leckbee, Joshua; Mulville, Thomas D.; Stoltzfus, Brian; Savage, Mark E.; Breden, Eric W.; Calhoun, Jacob D.; Cuneo, Michael E.; De Smet, Dennis; Hohlfelder, Robert J.; Jaramillo, Deanna M.; Johns, Owen; Lombrozo, Aaron C.; Lucero, Diego; Moore, James M.; Porter, John L.; Radovich, Shawn; Sceiford, M.E.; Sullivan, Michael A.; Walker, Charles; Yazzie, Nicole T.

Herein we present details of the design, simulation, and performance of a 100-GW linear transformer driver (LTD) cavity at Sandia National Laboratories. The cavity consists of 20 "bricks." Each brick is comprised of two 80 nF, 100 kV capacitors connected electrically in series with a custom, 200 kV, three-electrode, field-distortion gas switch. The brick capacitors are bipolar charged to ±100 kV for a total switch voltage of 200 kV. Typical brick circuit parameters are 40 nF capacitance (two 80 nF capacitors in series) and 160 nH inductance. The switch electrodes are fabricated from a WCu alloy and are operated with breathable air. Over the course of 6,556 shots the cavity generated a peak electrical current and power of 1.03 MA (±1.8%) and 106 GW (±3.1%). Experimental results are consistent (to within uncertainties) with circuit simulations for normal operation, and expected failure modes including prefire and late-fire events. New features of this development that are reported here in detail include: (1) 100 ns, 1 MA, 100-GW output from a 2.2 m diameter LTD into a 0.1 Ω load, (2) high-impedance solid charging resistors that are optimized for this application, and (3) evaluation of maintenance-free trigger circuits using capacitive coupling and inductive isolation.

More Details

Enhancing performance of magnetized liner inertial fusion at the Z facility

Physics of Plasmas

Slutz, Stephen A.; Gomez, Matthew R.; Hansen, Stephanie B.; Harding, Eric H.; Hutsel, Brian T.; Knapp, P.F.; Lamppa, Derek C.; Awe, Thomas J.; Ampleford, David J.; Bliss, David E.; Chandler, Gordon A.; Cuneo, Michael E.; Geissel, Matthias; Glinsky, Michael E.; Hahn, Kelly D.; Harvey-Thompson, Adam J.; Hess, Mark H.; Jennings, Christopher A.; Jones, Brent M.; Laity, George R.; Martin, Matthew R.; Peterson, K.J.; Porter, John L.; Rambo, Patrick K.; Rochau, G.A.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Schwarz, Jens; Schmit, Paul; Shipley, Gabriel A.; Sinars, Daniel; Smith, Ian C.; Stygar, William; Vesey, Roger A.; Weis, Matthew R.

The Magnetized Liner Inertial Fusion concept (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is being studied on the Z facility at Sandia National Laboratories. Neutron yields greater than 1012 have been achieved with a drive current in the range of 17-18 MA and pure deuterium fuel [Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. We show that 2D simulated yields are about twice the best yields obtained on Z and that a likely cause of this difference is the mix of material into the fuel. Mitigation strategies are presented. Previous numerical studies indicate that much larger yields (10-1000 MJ) should be possible with pulsed power machines producing larger drive currents (45-60 MA) than can be produced by the Z machine [Slutz et al., Phys. Plasmas 23, 022702 (2016)]. To test the accuracy of these 2D simulations, we present modifications to MagLIF experiments using the existing Z facility, for which 2D simulations predict a 100-fold enhancement of MagLIF fusion yields and considerable increases in burn temperatures. Experimental verification of these predictions would increase the credibility of predictions at higher drive currents.

More Details

Recent Diagnostic Platform Accomplishments for Studying Vacuum Power Flow Physics at the Sandia Z Accelerator

Laity, George R.; Aragon, Carlos; Bennett, Nichelle L.; Bliss, David E.; Foulk, James W.; Fierro, Andrew S.; Gomez, Matthew R.; Hess, Mark H.; Hutsel, Brian T.; Jennings, Christopher A.; Johnston, Mark D.; Kossow, Michael R.; Lamppa, Derek C.; Martin, Matthew R.; Patel, Sonal G.; Porwitzky, Andrew J.; Robinson, Allen C.; Rose, David; Vandevender, Pace; Waisman, Eduardo M.; Webb, Timothy J.; Welch, Dale; Rochau, G.A.; Savage, Mark E.; Stygar, William; White, William M.; Sinars, Daniel; Cuneo, Michael E.

Abstract not provided.

Estimates of Saturn Radiation Output Scaling versus Machine Design Parameters

2018 16th International Conference on Megagauss Magnetic Field Generation and Related Topics, MEGAGAUSS 2018 - Proceedings

Struve, Kenneth; Grabowski, Theodore C.; Joseph, Nathan; Oliver, Bryan V.; Savage, Mark E.; Ulmen, Ben; Vandevender, Pace J.

Saturn is a short-pulse ( 40 ns FWHM) x-ray generator capable of delivering up 10 MA into a bremsstrahlung diode to yield up 5 × 10^12 rad/s (Si) per shot at an energy of 1 to 2 MeV. With the machine now over 30 years old it is necessary to rebuild and replace many components, upgrade controls and diagnostics, design for more reliability and reproducibility, and, as possible upgrade the accelerator to produce more current at a low voltage ( 1 MV or lower). Thus it has been necessary to reevaluate machine design parameters. The machine is modeled as a simple LR circuit driven with an equivalent a sine-squared drive waveform as peak voltage, drive impedance, and vacuum inductance are varied. Each variation has implications for vacuum insulator voltage, diode voltage, diode impedance, and radiation output. For purposes of this study, radiation is scaled as the diode current times the diode voltage raised to the 2.7 power. Results of parameter scans are presented and used to develop a design that optimizes radiation output. Results indicate that to maintain the existing short pulse length of the machine but to increase output it is most beneficial to operate at an even higher impedance than originally designed. Also discussed are critical improvements that need to be made.

More Details

Measurements of Z Electrode Temperatures Using Absolutely Calibrated Streaked Visible Spectroscopy Systems and Avalanche Photodiodes

IEEE International Conference on Plasma Science

Patel, Sonal G.; Johnston, Mark D.; Bliss, David E.; Laity, George R.; Gomez, Matthew R.; Falcon, Ross E.; Scoglietti, Daniel J.; Macrunnels, Keven A.; Savage, Mark E.; Cuneo, Michael E.

Absolute calibration of streaked visible spectroscopy systems has been performed at Z-machine at Sandia National Labs in order to determine temperatures of electrode surfaces during the current pulse. The ability to calibrate the full system, including all fiber optic runs and probes is crucial to understanding errors in the calibration process. The calibration procedure involves imaging a blackbody light source, with a known spectral radiance which is coupled to an integrating sphere. This source is streaked slowly over a few ns using Sydor streak cameras. The slow sweep is converted to a 100-500ns sweep by imaging a bright light source on both sweep rates, and obtaining wavelength and time dependent correction curves. Any broadband light source or several laser lines of differing wavelengths can be used for this correction. This technique has yielded temperature estimates of several eV in the Z convolute.

More Details

A Path to Increased Performance in Magnetized Liner Inertial Fusion

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Harvey-Thompson, Adam J.; Weis, Matthew R.; Lamppa, Derek C.; Hutsel, Brian T.; Ampleford, David J.; Awe, Thomas J.; Bliss, David E.; Chandler, Gordon A.; Geissel, Matthias; Hahn, Kelly; Hansen, Stephanie B.; Harding, Eric H.; Hess, Mark H.; Knapp, P.F.; Laity, George R.; Martin, Matthew R.; Nagayama, Taisuke; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Schmit, Paul; Schwarz, Jens; Smith, Ian C.; Vesey, Roger A.; Yu, Edmund; Cuneo, Michael E.; Jones, Brent M.; Peterson, K.J.; Porter, John L.; Rochau, G.A.; Sinars, Daniel; Stygar, William A.

Abstract not provided.

Pulsed power performance of the Z machine: Ten years after the upgrade

IEEE International Pulsed Power Conference

Savage, Mark E.; Austin, Kevin N.; Hutsel, Brian T.; Kamm, Ryan J.; Mckee, G.R.; Stygar, William A.; Wakeland, Peter E.; Wemple, Nathan R.; White, William M.

The Z machine is a 36-module, multi-megavolt, low impedance magnetic pressure driver for high-energy-density physics experiments. In 2007, a major re-build doubled the stored energy and increased the peak current capability of Z. The upgraded system routinely drives 27 MA through low inductance dynamic loads with 110 nanosecond time to peak current. The Z pulsed power system is expected to be prepared for a full-energy experiment every day, with a small (<2%) chance of pulsed power system failure, and ±2 ns timing precision. To maintain that schedule with 20 MJ stored, it becomes essential to minimize failures that can damage hardware. We will show the results of several improvements made to the system that reduce spurious breakdowns and improve precision. In most cases, controlling electric fields is key, both to reliable insulation and to precision switching. The upgraded Z pulsed power system was originally intended to operate with 5 MV peak voltage in the pulse-forming section. Recent operation has been above 6 MV. Critical items in the pulsed power system are the DC-charged Marx generators, oil-water barriers, laser-triggered gas switches, and the vacuum insulator. We will show major improvements to the laser-triggered gas switches, and the water-insulated pulse forming lines, as well as delivered current reproducibility results from user experiments on the machine.

More Details

Pulsed power performance of the Z machine: Ten years after the upgrade

IEEE International Pulsed Power Conference

Savage, Mark E.; Austin, Kevin N.; Hutsel, Brian T.; Kamm, Ryan J.; Mckee, G.R.; Stygar, William A.; Wakeland, Peter E.; White, William M.

The Z machine is a 36-module, multi-megavolt, low impedance magnetic pressure driver for high-energy-density physics experiments. In 2007, a major re-build doubled the stored energy and increased the peak current capability of Z. The upgraded system routinely drives 27 MA through low inductance dynamic loads with 110 nanosecond time to peak current. The Z pulsed power system is expected to be prepared for a full-energy experiment every day, with a small (<2%) chance of pulsed power system failure, and ±2 ns timing precision. To maintain that schedule with 20 MJ stored, it becomes essential to minimize failures that can damage hardware. We will show the results of several improvements made to the system that reduce spurious breakdowns and improve precision. In most cases, controlling electric fields is key, both to reliable insulation and to precision switching. The upgraded Z pulsed power system was originally intended to operate with 5 MV peak voltage in the pulse-forming section. Recent operation has been above 6 MV. Critical items in the pulsed power system are the DC-charged Marx generators, oil-water barriers, laser-triggered gas switches, and the vacuum insulator. We will show major improvements to the laser-triggered gas switches, and the water-insulated pulse forming lines, as well as delivered current reproducibility results from user experiments on the machine.

More Details

Electrical and X-ray diagnostics on the NSTec 2-MA dense plasma focus system

IEEE International Pulsed Power Conference

Savage, Mark E.; Johns, Owen; Garcia, Michael R.; Lake, Patrick; Moore, J.K.; Ormond, Eugene C.; Webb, Timothy J.; Bennett, N.; Gall, B.; Gardner, S.; Molnar, S.; Sipe, N.; Weber, T.; Olson, R.T.; Schmidt, A.

National Security Technologies (NSTec) is developing dense plasma focus (DPF) systems for applications requiring intense pulsed neutron sources. Sandia National Laboratories participated in a limited number of experiments with one of those systems. In collaboration with NSTec, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory, we installed additional electrical and X-ray image measurements in parallel with normal operation of the system. Dense plasma focus machines have been studied for decades, but much of the experimental interest has been on neutron and X-ray yield. The primary goal for the present work was to develop and field high-fidelity and traceably-calibrated current and voltage measurements for comparison to digital simulations. The secondary goals were to utilize the current and voltage measurements to add general understanding of vacuum insulator behavior and current sheath dynamics. We also conducted initial scoping studies of soft X-ray diagnostics. We will show the electrical diagnostics and the techniques used to acquire high-fidelity signals in the difficult environment of the 2 MA, 6 μ plasma focus drive pulse. We will show how we measure accreted plasma mass non-invasively, and the sensitivity to background fill density. We will present initial qualitative results from filtered X-ray pinhole images and spectroscopic data from the pinch region.

More Details

Impedance-matched Marx generators

Physical Review Accelerators and Beams

Stygar, William A.; Lechien, K.R.; Stoltzfus, Brian; Austin, Kevin N.; Breden, Eric W.; Cuneo, Michael E.; Hutsel, Brian T.; Lewis, Scot A.; Mazarakis, Michael G.; Mckee, G.R.; Moore, James M.; Mulville, Thomas D.; Muron, David J.; Reisman, David; Savage, Mark E.; Sceiford, M.E.; Wisher, Matthew L.

We have conceived a new class of prime-power sources for pulsed-power accelerators: impedance-matched Marx generators (IMGs). The fundamental building block of an IMG is a brick, which consists of two capacitors connected electrically in series with a single switch. An IMG comprises a single stage or several stages distributed axially and connected in series. Each stage is powered by a single brick or several bricks distributed azimuthally within the stage and connected in parallel. The stages of a multistage IMG drive an impedance-matched coaxial transmission line with a conical center conductor. When the stages are triggered sequentially to launch a coherent traveling wave along the coaxial line, the IMG achieves electromagnetic-power amplification by triggered emission of radiation. Hence a multistage IMG is a pulsed-power analogue of a laser. To illustrate the IMG approach to prime power, we have developed conceptual designs of two ten-stage IMGs with LC time constants on the order of 100 ns. One design includes 20 bricks per stage, and delivers a peak electrical power of 1.05 TW to a matched-impedance 1.22-Ω load. The design generates 113 kV per stage and has a maximum energy efficiency of 89%. The other design includes a single brick per stage, delivers 68 GW to a matched-impedance 19-Ω load, generates 113 kV per stage, and has a maximum energy efficiency of 90%. For a given electrical-power-output time history, an IMG is less expensive and slightly more efficient than a linear transformer driver, since an IMG does not use ferromagnetic cores.

More Details

Daily operation of Z: an 80 TW 36-module pulsed power driver

Savage, Mark E.; Cuneo, Michael E.; Davis, Jean-Paul; Hutsel, Brian T.; Jones, Michael; Jones, Peter; Kamm, Ryan J.; Lopez, Michael R.; Matzen, M.K.; Mcdaniel, D.H.; Mckee, G.R.; Maenchen, J.E.; Owen, A.C.; Porter, John L.; Prestwich, K.R.; Schwarz, Jens; Sinars, Daniel; Stoltzfus, Brian; Struve, Kenneth; Stygar, William A.; Wakeland, Peter E.; White, William M.

Abstract not provided.

Overview of Neutron diagnostic measurements for MagLIF Experiments on the Z Accelerator

Hahn, Kelly; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Torres, Jose; Bur, James A.; Cuneo, Michael E.; Glebov, V.Y.; Harvey-Thompson, Adam J.; Hess, Mark H.; Johns, Owen; Jones, Brent M.; Lamppa, Derek C.; Lash, Joel S.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Reneker, Joseph; Robertson, G.K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Abstract not provided.

Results 1–50 of 208
Results 1–50 of 208