Conventional electrodes and associated positioning systems for intracellular recording from single neurons in vitro and in vivo are large and bulky, which has largely limited their scalability. Further, acquiring successful intracellular recordings is very tedious, requiring a high degree of skill not readily achieved in a typical laboratory. We report here a robotic, MEMS-based intracellular recording system to overcome the above limitations associated with form factor, scalability, and highly skilled and tedious manual operations required for intracellular recordings. This system combines three distinct technologies: (1) novel microscale, glass–polysilicon penetrating electrode for intracellular recording; (2) electrothermal microactuators for precise microscale movement of each electrode; and (3) closed-loop control algorithm for autonomous positioning of electrode inside single neurons. Here we demonstrate the novel, fully integrated system of glass–polysilicon microelectrode, microscale actuators, and controller for autonomous intracellular recordings from single neurons in the abdominal ganglion of Aplysia californica (n = 5 cells). Consistent resting potentials (<−35 mV) and action potentials (>60 mV) were recorded after each successful penetration attempt with the controller and microactuated glass–polysilicon microelectrodes. The success rate of penetration and quality of intracellular recordings achieved using electrothermal microactuators were comparable to that of conventional positioning systems. Preliminary data from in vivo experiments in anesthetized rats show successful intracellular recordings. The MEMS-based system offers significant advantages: (1) reduction in overall size for potential use in behaving animals, (2) scalable approach to potentially realize multi-channel recordings, and (3) a viable method to fully automate measurement of intracellular recordings. This system will be evaluated in vivo in future rodent studies.
We report on the development of single-frequency VCSELs (vertical-cavity surface-emitting lasers) for sensing the position of a moving MEMS (micro-electro-mechanical system) object with resolution much less than 1nm. Position measurement is the basis of many different types of MEMS sensors, including accelerometers, gyroscopes, and pressure sensors. Typically, by switching from a traditional capacitive electronic readout to an interferometric optical readout, the resolution can be improved by an order of magnitude with a corresponding improvement in MEMS sensor performance. Because the VCSEL wavelength determines the scale of the position measurement, laser wavelength (frequency) stability is desirable. This paper discusses the impact of VCSEL amplitude and frequency noise on the position measurement.
This paper, the first of two parts, reports the design and fabrication of a fully integrated oven controlled microelectromechanical oscillator (OCMO). This paper begins by describing the limits on oscillator frequency stability imposed by the thermal drift and electronic properties (Q, resistance) of both the resonant tank circuit and feedback electronics required to form an electronic oscillator. An OCMO is presented that takes advantage of high thermal isolation and monolithic integration of both micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. This was achieved by developing a processing technique where both silicon-on-insulator complementary metal-oxide-semiconductor (CMOS) circuitry and piezoelectric aluminum nitride, AlN, micromechanical resonators are placed on a suspended platform within a standard CMOS integrated circuit. Operation at microscale sizes achieves high thermal resistances (∼10 °C/mW), and hence thermal stabilization of the oscillators at very low-power levels when compared with the state-of-the-art ovenized crystal oscillators, OCXO. A constant resistance feedback circuit is presented that incorporates on platform resistive heaters and temperature sensors to both measure and stabilize the platform temperature. The limits on temperature stability of the OCMO platform and oscillator frequency imposed by the gain of the constant resistance feedback loop, placement of the heater and temperature sensing resistors, as well as platform radiative and convective heat losses are investigated. [2015-0035].
We have developed a MEMS based thin (<100 μm), temperature stable (< 1 parts-per-billion per degree Celsius (ppb/°C)), low power (<10 mW), frequency reference. Traditional high stability oscillators are based on quartz crystals. While a mature technology, the large size of quartz crystals presents important mission barriers including reducing oscillator thickness below 400 μm, and low power temperature stabilization (ovenizing). The small volume microresonators are 2 μm thick compared to 100’s of microns for quartz, and provide acoustic/thermal isolation when suspended above the substrate by narrow beams. This isolation enables a new paradigm for ovenizing oscillators at revolutionary low power levels <10 mW as compared to >300 mW for oven controlled quartz oscillators (OCXO). The oven controlled MEMS oscillator (OCMO) takes advantage of high thermal isolation and CMOS integration to ovenize the entire oscillator (AlN resonator and CMOS) on a suspended platform. This enables orders of magnitude reductions in size and power as compared with today's OCXO technology.
Capacitors used in firing sets and other high discharge current applications are discharge tested to verify performance of the capacitor against the application requirements. Parameters such as capacitance, inductance, rise time, pulse width, peak current and current reversal must be verified to ensure that the capacitor will meet the application needs. This report summarizes an analysis performed on the discharge current data to extract these parameters by fitting a second-order system model to the discharge data and using this fit to determine the resulting performance metrics. Details of the theory and implementation are presented. Using the best-fit second-order system model to extract these metrics results in less sensitivity to noise in the measured data and allows for direct extraction of the total series resistance, inductance, and capacitance.
Significant deformation of thin films occurs when measuring thickness by mechanical means. This source of measurement error can lead to underestimating film thickness if proper corrections are not made. Analytical solutions exist for Hertzian contact deformation, but these solutions assume relatively large geometries. If the film being measured is thin, the analytical Hertzian assumptions are not appropriate. ANSYS is used to model the contact deformation of a 48 gauge Mylar film under bearing load, supported by a stiffer material. Simulation results are presented and compared to other correction estimates. Ideal, semi-infinite, and constrained properties of the film and the measurement tools are considered.
Progress in MEMS fabrication has enabled a wide variety of force and displacement sensing devices to be constructed. One device under intense development at Sandia is a passive shock switch, described elsewhere (Mitchell 2008). A goal of all MEMS devices, including the shock switch, is to achieve a high degree of reliability. This, in turn, requires systematic methods for validating device performance during each iteration of design. Once a design is finalized, suitable tools are needed to provide quality assurance for manufactured devices. To ensure device performance, measurements on these devices must be traceable to NIST standards. In addition, accurate metrology of MEMS components is needed to validate mechanical models that are used to design devices to accelerate development and meet emerging needs. Progress towards a NIST-traceable calibration method is described for a next-generation, 2D Interfacial Force Microscope (IFM) for applications in MEMS metrology and qualification. Discussed are the results of screening several suitable calibration methods and the known sources of uncertainty in each method.
Due to the coupling of thermal and mechanical behaviors at small scales, a Campaign 6 project was created to investigate thermomechanical phenomena in microsystems. This report documents experimental measurements conducted under the auspices of this project. Since thermal and mechanical measurements for thermal microactuators were not available for a single microactuator design, a comprehensive suite of thermal and mechanical experimental data was taken and compiled for model validation purposes. Three thermal microactuator designs were selected and fabricated using the SUMMiT V{sup TM} process at Sandia National Laboratories. Thermal and mechanical measurements for the bent-beam polycrystalline silicon thermal microactuators are reported, including displacement, overall actuator electrical resistance, force, temperature profiles along microactuator legs in standard laboratory air pressures and reduced pressures down to 50 mTorr, resonant frequency, out-of-plane displacement, and dynamic displacement response to applied voltages.
This report summarizes design and modeling activities for the MEMS passive shock sensor. It provides a description of past design revisions, including the purposes and major differences between design revisions but with a focus on Revisions 4 through 7 and the work performed in fiscal year 2008 (FY08). This report is a reference for comparing different designs; it summarizes design parameters and analysis results, and identifies test structures. It also highlights some of the changes and or additions to models previously documented [Mitchell et al. 2006, Mitchell et al. 2008] such as the way uncertainty thresholds are analyzed and reported. It also includes dynamic simulation results used to investigate how positioning of hard stops may reduce vibration sensitivity.
This report summarizes the functional, model validation, and technology readiness testing of the Sandia MEMS Passive Shock Sensor in FY08. Functional testing of a large number of revision 4 parts showed robust and consistent performance. Model validation testing helped tune the models to match data well and identified several areas for future investigation related to high frequency sensitivity and thermal effects. Finally, technology readiness testing demonstrated the integrated elements of the sensor under realistic environments.
This report describes activities conducted in FY07 to mature the MEMS passive shock sensor. The first chapter of the report provides motivation and background on activities that are described in detail in later chapters. The second chapter discusses concepts that are important for integrating the MEMS passive shock sensor into a system. Following these two introductory chapters, the report details modeling and design efforts, packaging, failure analysis and testing and validation. At the end of FY07, the MEMS passive shock sensor was at TRL 4.
There is an increasing demand to build highly sensitive, low-G, microscale acceleration sensors with the ability to sense accelerations in the nano-G (10-8 m/s2) regime. To achieve such sensitivities, these sensors require compliant mechanical springs attached to large masses. The high sensitivities and the difficulty in integrating robust mechanical stops into these designs make these parts inherently weak, lacking the robustness to survive even the low level accelerations encountered in standard handling, from release processing, where supporting interlayers present during fabrication are etched away, through packaging. Thus, the process of transforming a MEMS-based acceleration sensor from an unreleased state to a protected functional state poses significant challenges. We summarize prior experiences with packaging such devices and report on recent work in packaging and protecting a highly sensitive acceleration sensor that optically senses displacement through the use of sub-wavelength nanogratings. We find that successful implementation of such sensors requires starting with a clean and robust MEMS design, performing careful and controlled release processing, and designing and executing a robust handling and packaging solution that keeps a fragile MEMS device protected at all times.
Two different Sandia MEMS devices have been tested in a high-g environment to determine their performance and survivability. The first test was performed using a drop-table to produce a peak acceleration load of 1792 g's over a period of 1.5 ms. For the second test the MEMS devices were assembled in a gun-fired penetrator and shot into a cement target at the Army Waterways Experiment Station in Vicksburg Mississippi. This test resulted in a peak acceleration of 7191 g's for a duration of 5.5 ms. The MEMS devices were instrumented using the MEMS Diagnostic Extraction System (MDES), which is capable of driving the devices and recording the device output data during the high-g event, providing in-flight data to assess the device performance. A total of six devices were monitored during the experiments, four mechanical non-volatile memory devices (MNVM) and two Silicon Reentry Switches (SiRES). All six devices functioned properly before, during, and after each high-g test without a single failure. This is the first known test under flight conditions of an active, powered MEMS device at Sandia.
Radio frequency microelectromechanical systems (RF MEMS) are an enabling technology for next-generation communications and radar systems in both military and commercial sectors. RF MEMS-based reconfigurable circuits outperform solid-state circuits in terms of insertion loss, linearity, and static power consumption and are advantageous in applications where high signal power and nanosecond switching speeds are not required. We have demonstrated a number of RF MEMS switches on high-resistivity silicon (high-R Si) that were fabricated by leveraging the volume manufacturing processes available in the Microelectronics Development Laboratory (MDL), a Class-1, radiation-hardened CMOS manufacturing facility. We describe novel tungsten and aluminum-based processes, and present results of switches developed in each of these processes. Series and shunt ohmic switches and shunt capacitive switches were successfully demonstrated. The implications of fabricating on high-R Si and suggested future directions for developing low-loss RF MEMS-based circuits are also discussed.
Thermal actuators have proven to be a robust actuation method in surface-micromachined MEMS processes. Their higher output force and lower input voltage make them an attractive alternative to more traditional electrostatic actuation methods. A predictive model of thermal actuator behavior has been developed and validated that can be used as a design tool to customize the performance of an actuator to a specific application. This tool has also been used to better understand thermal actuator reliability by comparing the maximum actuator temperature to the measured lifetime. Modeling thermal actuator behavior requires the use of two sequentially coupled models, the first to predict the temperature increase of the actuator due to the applied current and the second to model the mechanical response of the structure due to the increase in temperature. These two models have been developed using Matlab for the thermal response and ANSYS for the structural response. Both models have been shown to agree well with experimental data. In a parallel effort, the reliability and failure mechanisms of thermal actuators have been studied. Their response to electrical overstress and electrostatic discharge has been measured and a study has been performed to determine actuator lifetime at various temperatures and operating conditions. The results from this study have been used to determine a maximum reliable operating temperature that, when used in conjunction with the predictive model, enables us to design in reliability and customize the performance of an actuator at the design stage.
Retinal prosthesis projects around the world have been pursuing a functional replacement system for patients with retinal degeneration. In this paper, the concept for a micromachined conformal electrode array is outlined. Individual electrodes are designed to float on micromachined springs on a substrate that will enable the adjustment of spring constants-and therefore contact force-by adjusting the dimensions of the springs at each electrode. This also allows the accommodation of the varying curvature/topography of the retina. We believe that this approach provides several advantages by improving the electrode/tissue interface as well as generating some new options for in-situ measurements and overall system design.
Polycrystalline silicon (polysilicon) surface micromachining is a new technology for building micrometer ({micro}m) scale mechanical devices on silicon wafers using techniques and process tools borrowed from the manufacture of integrated circuits. Sandia National Laboratories has invested a significant effort in demonstrating the viability of polysilicon surface micromachining and has developed the Sandia Ultraplanar Micromachining Technology (SUMMiT V{trademark} ) process, which consists of five structural levels of polysilicon. A major advantage of polysilicon surface micromachining over other micromachining methods is that thousands to millions of thin film mechanical devices can be built on multiple wafers in a single fabrication lot and will operate without post-processing assembly. However, if thin film mechanical or surface properties do not lie within certain tightly set bounds, micromachined devices will fail and yield will be low. This results in high fabrication costs to attain a certain number of working devices. An important factor in determining the yield of devices in this parallel-processing method is the uniformity of these properties across a wafer and from wafer to wafer. No metrology tool exists that can routinely and accurately quantify such properties. Such a tool would enable micromachining process engineers to understand trends and thereby improve yield of micromachined devices. In this LDRD project, we demonstrated the feasibility of and made significant progress towards automatically mapping mechanical and surface properties of thin films across a wafer. The MEMS parametrics measurement team has implemented a subset of this platform, and approximately 30 wafer lots have been characterized. While more remains to be done to achieve routine characterization of all these properties, we have demonstrated the essential technologies. These include: (1) well-understood test structures fabricated side-by-side with MEMS devices, (2) well-developed analysis methods, (3) new metrologies (i.e., long working distance interferometry) and (4) a hardware/software platform that integrates (1), (2) and (3). In this report, we summarize the major focus areas of our LDRD project. We describe the contents of several articles that provide the details of our approach. We also describe hardware and software innovations we made to realize a fully automatic wafer prober system for MEMS mechanical and surface property characterization across wafers and from wafer-lot to wafer-lot.