Publications
Search results
Jump to search filtersFinal report : compliant thermo-mechanical MEMS actuators, LDRD #52553
Thermal actuators have proven to be a robust actuation method in surface-micromachined MEMS processes. Their higher output force and lower input voltage make them an attractive alternative to more traditional electrostatic actuation methods. A predictive model of thermal actuator behavior has been developed and validated that can be used as a design tool to customize the performance of an actuator to a specific application. This tool has also been used to better understand thermal actuator reliability by comparing the maximum actuator temperature to the measured lifetime. Modeling thermal actuator behavior requires the use of two sequentially coupled models, the first to predict the temperature increase of the actuator due to the applied current and the second to model the mechanical response of the structure due to the increase in temperature. These two models have been developed using Matlab for the thermal response and ANSYS for the structural response. Both models have been shown to agree well with experimental data. In a parallel effort, the reliability and failure mechanisms of thermal actuators have been studied. Their response to electrical overstress and electrostatic discharge has been measured and a study has been performed to determine actuator lifetime at various temperatures and operating conditions. The results from this study have been used to determine a maximum reliable operating temperature that, when used in conjunction with the predictive model, enables us to design in reliability and customize the performance of an actuator at the design stage.
The Evolution of Self-Organized Domain Structures: Pb on Cu(111)
Science
Abstract not provided.
Surface Morphology Changes During Pb Deposition on Cu(100): Evidence for Surface Alloyed Cu(100)-c(2x2) Pb
Surface Science
Using Low Energy Electron Microscopy (LEEM), the authors have followed Cu(100) surface morphology changes during Pb deposition at different temperatures. Surface steps advance and 2-D islands nucleate and grow as deposited Pb first alloys, and then dealloys, on a 125 C Cu(100)surface. From LEEM images, they determine how much Cu is being displaced at each stage and find that the amount of material added to the top layer for a complete Pb/Cu(100) c(4x4) reconstruction (a surface alloy) is consistent with the expected c(4x4) Cu content of 0.5 monolayer. However, as the surface changes to the Pb/Cu(100) c(2x2) overlayer, they find that the displaced material from surface dealloying, 0.22ML, is more than a factor of two lower than expected based on a pure Pb c(2x2) overlayer. Further, they find that in the 70 to 130 C range the amount of Cu remaining in c(2x2) increases with increasing substrate temperature during the deposition, showing that surface Cu is alloyed with Pb in the c(2x2) structure at these temperatures. When holding the sample at 125 C, the transformation from the c(2x2) structure to the higher coverage c(5{radical}2 x{radical}2)R45{degree} overlayer structure displaces more Cu, confirming the c(2x2) surface alloy model. They also find the c(2x2) surface has characteristically square 2-D islands with step edges parallel to the (100) type crystallographic directions, whereas the c(5{radical}2 x{radical}2)R45{degree} structure has line-like features which run parallel to the dislocation double rows of this surface's atomic structure and which expand into 2-D islands upon coarsening.
The Relationship Between the Growth Shape of Three-Dimensional Pb Islands on Cu(100) and the Domain Orientation of the Underlying c(5v2xv2)R45 Degree Structure
Surface Science Letters
The authors use low energy electron microscopy to identify a correlation between the growth shape of three-dimensional Pb islands on Cu(100)and the domain structure of the underlying Pb overlayer. Deposition of 0.6 monolayer Pb on Cu(100) produces a compressed c(2x2) overlayer, designated c(5{radical}2x{radical}2)R45{degree}, with periodic rows of anti-phase boundaries. They found that heating the surface to temperatures above 100 C coarsens the orientational domains of this structure to sizes that are easily resolved in the low energy electron microscope. Three-dimensional Pb islands, grown on the coarsened domains, are found to be asymmetric with orientations that correlate with the domain structure. Once nucleated with a preferred growth orientation, islands continue to grow with the same preferred orientation, even across domain boundaries.
Mesoscopic-scale observations of surface alloying, surface phase transitions, domain coarsening, and 3-D island growth: Pb on Cu(100)
Low energy electron microscopy (LEEM) is used to investigate the dynamics of Pb overlayer growth on Cu(100). By following changes in surface morphology during Pb deposition, the amount of Cu transported to the surface as the Pb first alloys into the surface during formation of the c(4x4) phase and subsequently de-alloys during conversion to the c(2x2) phase is measured. The authors find that the added coverage of Cu during alloying is consistent with the proposed model for the c(4x4) alloy phase, but the added coverage during de-alloying is not consistent with the accepted model for the c(2x2) phase. To account for the discrepancy, the authors propose that Cu atoms are incorporated in the c(2x2) structure. Island growth and step advancement during the transition from the c(2x2) to c(5{radical}2x{radical}2)R45{degree} structure agrees with this model. The authors also use the LEEM to identify the order and temperature of the two-dimensional melting phase transitions for the three Pb/Cu(100) surface structures. Phase transitions for the c(5{radical}2x{radical}2)R45{degree} and c(4x4) structures are first-order, but the c(2x2) transition is second order. They determine that rotational domains of the c(5{radical}2x{radical}2)R45{degree} structure coarsen from nanometer- to micron-sized dimensions with relatively mild heating ({approximately}120 C), whereas coarsening of c(4x4) domains requires considerably higher temperatures ({approximately}400 C). In studies of three-dimensional island formation, they find that the islands grow asymmetrically with an orientational dependence that is directly correlated with the domain structure of the underlying c(5{radical}2x{radical}2)R45{degree} phase.