Photonic Integrated Circuits for RF Electronic Systems
Abstract not provided.
Abstract not provided.
Abstract not provided.
Optics Express
Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of the Optical Society of America B: Optical Physics
Currently, superconducting qubits lead the way in potential candidates for quantum computing. At the same time, transferring quantum information over long distances typically relies on the use of photons as the elementary qubit. Converting between stationary electronic qubits in superconducting systems and traveling photonic qubits is a challenging yet necessary goal for the interface of quantum computing and communication. One promising path to achieving this goal appears to be the integration of superconductivity with optically active semiconductors, with quantum information being transferred between the two by means of the superconducting proximity effect. Obtaining good interfaces between superconductors and semiconductors is the next obvious step for improving these hybrid systems. Here, we report on our observation of superconductivity in a 2.3 m diameter self-assembled indium structure grown epitaxially on the surface of a semiconductor material.
Abstract not provided.