Publications

Results 4476–4500 of 99,299

Search results

Jump to search filters

Xyce™ Parallel Electronic Simulator Users' Guide (V.7.6)

Keiter, Eric R.; Russo, Thomas V.; Schiek, Richard; Thornquist, Heidi K.; Mei, Ting; Verley, Jason C.; Aadithya, Karthik V.; Schickling, Joshua D.

This manual describes the use of the Xyce™ Parallel Electronic Simulator. Xyce™ has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. (2) A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. (3) Device models that are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only). (4) Object-oriented code design and implementation using modern coding practices. Xyce™ is a parallel code in the most general sense of the phrase—a message passing parallel implementation—which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel eficiency is achieved as the number of processors grows.

More Details

Development of Single Photon Sources in GaN

Mounce, Andrew M.; Wang, George; Schultz, Peter A.; Titze, Michael; Campbell, Deanna M.; Lu, Ping; Henshaw, Jacob D.

The recent discovery of bright, room-temperature, single photon emitters in GaN leads to an appealing alternative to diamond best single photon emitters given the widespread use and technological maturity of III-nitrides for optoelectronics (e.g. blue LEDs, lasers) and high-speed, high-power electronics. This discovery opens the door to on-chip and on-demand single photon sources integrated with detectors and electronics. Currently, little is known about the underlying defect structure nor is there a sense of how such an emitter might be controllably created. A detailed understanding of the origin of the SPEs in GaN and a path to deterministically introduce them is required. In this project, we develop new experimental capabilities to then investigate single photon emission from GaN nanowires and both GAN and AlN wafers. We ion implant our wafers with the ion implanted with our focused ion beam nanoimplantation capabilities at Sandia, to go beyond typical broad beam implantation and create single photon emitting defects with nanometer precision. We've created light emitting sources using Li+ and He+, but single photon emission has yet to be demonstrated. In parallel, we calculate the energy levels of defects and transition metal substitutions in GaN to gain a better understanding of the sources of single photon emission in GaN and AlN. The combined experimental and theoretical capabilities developed throughout this project will enable further investigation into the origins of single photon emission from defects in GaN, AlN, and other wide bandgap semiconductors.

More Details

Stabilizing effect of bedrock uplift on retreat of Thwaites Glacier, Antarctica, at centennial timescales

Earth and Planetary Science Letters

Book, Cameron; Hoffman, Matthew J.; Kachuck, Samuel B.; Hillebrand, Trevor R.; Price, Stephen F.; Perego, Mauro; Bassis, Jeremy N.

Viscoelastic rebound of the solid Earth upon the removal of ice loads has the potential to inhibit marine ice sheet instability, thereby forestalling ice-sheet retreat and global mean sea-level rise. The timescale over which the solid Earth - ice sheet system responds to changes in ice thickness and bedrock topography places a strong control on the spatiotemporal influence of this negative feedback mechanism. In this study, we assess the impact of solid-earth rheological structure on model projections of the retreat of Thwaites Glacier, West Antarctica, and the concomitant sea-level rise by coupling the dynamic ice sheet model MALI to a regional glacial isostatic adjustment (GIA) model. We test the sensitivity of model projections of ice-sheet retreat and associated sea-level rise across a range of four different solid-earth rheologies, forced by standard ISMIP6 ocean and atmospheric datasets for the RCP8.5 climate scenario. These model parameters are applied to 500-year, coupled ice-sheet - GIA simulations. For the mantle viscosity best supported by observations, the negative GIA feedback leads to a reduction in mass loss that remains above 20% after about a hundred years. Mass-loss reduction peaks at 50% around 2300, which is when a control simulation without GIA experiences its maximum rate of retreat. For a weaker solid-earth rheology that is unlikely but compatible with observational uncertainty, mass loss reduction remains above 50% after 2150. At 2100, mass loss reduction is 10% for the best-fit rheology and 25% for the weakest rheology. At the same time, we estimate that water expulsion from the rebounding solid Earth beneath the ocean near Thwaites Glacier may increase sea-level rise by up to 20% at five centuries. Additionally, the reduction in ice-sheet retreat caused by GIA is substantially reduced under stronger climate forcings, suggesting that the stabilizing feedback of GIA will also be an indirect function of emissions scenario. We hypothesize that feedbacks between the solid Earth - ice sheet system are controlled by a competition between the spatial extent and timescale of bedrock uplift relative to the rate of grounded ice retreat away from the region of most rapid unloading. Although uncertainty in solid-earth rheology leads to large uncertainty in future sea-level rise contribution from Thwaites Glacier, under all plausible parameters the GIA effects are too large to be ignored for future projections of Thwaites Glacier of more than a century.

More Details

Overview of Ablation Research at Sandia National Laboratories

Roberts, Scott A.; Anderson, Nicholas; Arienti, Marco; Armijo, Kenneth M.; Blonigan, Patrick J.; Casper, Katya M.; Collins, Lincoln N.; Creveling, Peter J.; Delgado, Paul M.; Di Stefano, Martin; Engerer, Jeffrey D.; Fisher, Travis C.; Foster, Collin W.; Gosma, Mitchell; Hansen, Michael A.; Hernandez-Sanchez, Bernadette A.; Hess, Ryan; Kieweg, Sarah; Lynch, Kyle P.; Mussoni, Erin E.; Potter, Kevin M.; Tencer, John T.; Van De Werken, Nekoda; Wilson, Zachary; Wagner, Justin L.; Wagnild, Ross M.

Abstract not provided.

Thermal runaway of nitric acid-soaked kitty litter in transuranic waste

Process Safety and Environmental Protection

Hobbs, Michael L.; Britt, Phillip F.; Hobbs, David T.; Kaneshige, Michael; Minette, Michael; Mintz, Jessica; Pennebaker, Frank M.; Parker, Gary R.; Pierce, Robert; Rosenberg, David; Schwantes, Jon; Williams, Audrey

Precise wording is important in every field of study, including operational procedures. Confusion in the wording “organic” and “inorganic” may have contributed to substitution of an organic kitty litter for an inorganic adsorbent used to prepare nuclear waste for disposal at an underground salt repository. Adsorbents prevent liquids like nitric acid from causing corrosion within the waste drums. However, combination of organic material with nitric acid can cause heat- and gas-generating reactions resulting in thermal runaway, rapid pressurization, and drum rupture. In 2014, waste Drum 68660 containing nitric acid-soaked organic kitty litter exploded and released transuranic waste into the repository. The cause of the accident was never identified. Here we show that the root cause of Drum 68660 igniting was restriction of the drum vent resulting in accelerated nitric acid chemistry, thermal runaway, and radiation dispersal.

More Details

Sensitivity analysis of generic deep geologic repository with focus on spatial heterogeneity induced by stochastic fracture network generation

Advances in Water Resources

Brooks, Dusty M.; Swiler, Laura P.; Stein, Emily; Mariner, Paul; Basurto, Eduardo; Portone, Teresa; Eckert, Aubrey; Leone, Rosemary C.

Geologic Disposal Safety Assessment Framework is a state-of-the-art simulation software toolkit for probabilistic post-closure performance assessment of systems for deep geologic disposal of nuclear waste developed by the United States Department of Energy. This paper presents a generic reference case and shows how it is being used to develop and demonstrate performance assessment methods within the Geologic Disposal Safety Assessment Framework that mitigate some of the challenges posed by high uncertainty and limited computational resources. Variance-based global sensitivity analysis is applied to assess the effects of spatial heterogeneity using graph-based summary measures for scalar and time-varying quantities of interest. Behavior of the system with respect to spatial heterogeneity is further investigated using ratios of water fluxes. This analysis shows that spatial heterogeneity is a dominant uncertainty in predictions of repository performance which can be identified in global sensitivity analysis using proxy variables derived from graph descriptions of discrete fracture networks. New quantities of interest defined using water fluxes proved useful for better understanding overall system behavior.

More Details

Shifting from Fossil Fuel Reliance to Green Energy Sovereignty: Ute Mountain Ute Tribe

Montoya, Rudy

Self-determination has been an on-going effort for Native American people and gained much traction with the passing of The Energy Policy Act of 2005, which included the Indian Tribal Energy Development and Self-Determination Act. Congress passed this act to assist Native American tribes and Alaska Native villages with planning, development, and assistance to achieve their energy goals. The Ute Mountain Ute Tribe (UMUT) has relied on oil and natural gas for economic support the last 70 years. Burning fossil fuels, along with oil and gas development, decreases the quality of air and leads to increased greenhouse gas emissions. Subsequently, the burning of fossil fuels to produce energy is now more costly than many renewable energy sources, including solar photovoltaic (PV) systems. Environmental stewardship, along with the need to maintain revenue generation, has led UMUT’s efforts to achieve energy self-determinism employing PV and exploring other technology. In the past, the tribe completed a 1 megawatt PV project near Towaoc, Colorado, which serves as a case study on the tribe’s energy goals: a future where renewables will dominate their energy landscape. This paper explores UMUT’s past and on-going efforts toward energy independence and how it relates to the broader landscape of Native American energy sovereignty.

More Details
Results 4476–4500 of 99,299
Results 4476–4500 of 99,299