Elastomeric rubbers serve a vital role as sealing materials in the hydrogen storage and transport infrastructure. With applications including O-rings and hose-liners, these components are exposed to pressurized hydrogen at a range of temperatures, cycling rates, and pressure extremes. Cyclic (de)pressurization is known to degrade these materials through the process of cavitation. This readily visible failure mode occurs as a fracture or rupture of the material and is due to the oversaturated gas localizing to form gas bubbles. Computational modeling in the Hydrogen Materials Compatibility Program (H-Mat), co-led by Sandia National Laboratories and Pacific Northwest National Laboratory, employs multi-scale simulation efforts to build a predictive understanding of hydrogen-induced damage in materials. Modeling efforts within the project aim to provide insight into how to formulate materials that are less sensitive to high-pressure hydrogen-induced failure. In this document, we summarize results from atomistic molecular dynamics simulations, which make predictive assessments of the effects of compositional variations in the commonly used elastomer, ethylene propylene diene monomer (EPDM).
Grid operating security studies are typically employed to establish operating boundaries, ensuring secure and stable operation for a range of operation under NERC guidelines. However, if these boundaries are severely violated, existing system security margins will be largely unknown, as would be a secure incremental dispatch path to higher security margins while continuing to serve load. As an alternative to the use of complex optimizations over dynamic conditions, this work employs the use of machine learning to identify a sequence of secure state transitions which place the grid in a higher degree of operating security with greater static and dynamic stability margins. Several reinforcement learning solution methods were developed using deep learning neural networks, including Deep Q-learning, Mu-Zero, and the continuous algorithms Proximal Reinforcement Learning, and Advantage Actor Critic Learning. The work is demonstrated on a power grid with three control dimensions but can be scaled in size and dimensionality, which is the subject of ongoing research.
Metal hydride hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas. This paper reports on the development of a laboratory scale two-stage Metal Hydride Compressor (MHC) system with a feed pressure of 150 bar delivering high purity H2 gas at outlet pressures up to 875 bar. Stage 1 and stage 2 AB2 metal hydrides are identified based on experimental characterization of the pressure-composition-temperature (PCT) behavior of candidate materials. The selected metal hydrides are each combined with expanded natural graphite, increasing the thermal conductivity of the composites by an order of magnitude. These composites are integrated in two compressor beds with internal heat exchangers that alternate between hydrogenation and dehydrogenation cycles by thermally cycling between 20 °C and 150 °C. The prototype compressor achieved compression of hydrogen from 150 bar to 700 bar with an average flow rate of 33.6 g/hr.
This work presents the development of a multistaged stabilized continuation for the three-dimensional unpowered hypersonic trajectory planning problem using indirect optimal control methods. The stabilized continuation method is noniterative and guaranteed to terminate within a finite number of floating point operations, thereby making it well suited for onboard autonomous implementations. We present a multistage formulation of the stabilized continuation scheme that involves starting with a “loose” integration tolerance during the first stage and ramping up toward a “strict” integration tolerance through subsequent stages. An important benefit of this approach is that even when the solution to the underlying optimal control problem is numerically unstable, such as with the hypersonic vehicle footprint generation problem, the stabilized continuation algorithm is shown to be successful in finding a solution while providing some additional insights into the underlying cause of the numerical instability.
Electric Vehicles (EV) present a unique challenge to electric power system (EPS) operations because of the potential magnitude and timing of load increases due to EV charging. Time-of-Use (TOU) electricity pricing is an established way to reduce peak system loads. It is effective at shifting the timing of some customer-activated residential loads – such as dishwashers, washing machines, or HVAC systems – to off-peak periods. EV charging, though, can be larger than typical residential loads (up to 19.2 kW) and may have on-board controls that automatically begin charging according to a pre-set schedule, such as when off-peak periods begin. To understand and quantify the potential impact of EV charging's response to TOU pricing, this paper simulates 10 distribution feeders with predicted 2030 EV adoption levels. The simulation results show that distribution EPS experience an increase in peak demand as high as 20% when a majority of the charging begins immediately after on-peak times end, as might occur if EV charging is automatically scheduled. However, if charging start times are randomized within the off-peak period, EV charging is spread out and the simulations showed a decrease in the peak load to be 5% lower than results from simulations that did not implement TOU rates.
One detonation test was monitored for impulse noise at Thunder Range on November 6, 2020. The TNT equivalency for this shot was 100 lbs. Ground zero for this test was located at an open area of Range 7. The Armag, where MOW were remotely located, was just south of the east end of the TR shock tube The purpose of this sampling event was to characterize the noise attenuation provided by the Armag which will be used as the primary firing location in a future test series. To determine attenuation provided by the Armag, one sound level monitor was placed inside and a second monitor was placed outside the hardened structure at the same distance from ground zero. The Armag was located 1300 feet from ground zero. Essential personnel performing these tests were remotely located inside the Armag and wore hearing protection with a minimum NRR of 23. Members of the Workforce (MOW) who are exposed to noise levels above 140 dBC, regardless of hearing protection worn, are required to be enrolled into the SNL Hearing Conservation Program which includes audiometric testing, online training (HCP100) and wearing hearing protection.
This document contains the design and operation principles for the wind turbine emulator (WTE) located in the Distributed Energy Technologies Laboratory (DETL) at Sandia National Laboratories (Sandia). The wind turbine emulator is a power hardware -in-the-loop (PHIL) representation of the research wind turbines located in Lubbock, Texas at the Sandia Scaled Wind Farm Technology (SWiFT) facility. This document describes installation and commissioning steps, and it provides references to component manuals and specifications.
Numerical Methods for Partial Differential Equations
D'Elia, Marta; Aulisa, Eugenio; Capodaglio, Giacomo; Chierici, Andrea
In this paper, we design efficient quadrature rules for finite element (FE) discretizations of nonlocal diffusion problems with compactly supported kernel functions. Two of the main challenges in nonlocal modeling and simulations are the prohibitive computational cost and the nontrivial implementation of discretization schemes, especially in three-dimensional settings. In this work, we circumvent both challenges by introducing a parametrized mollifying function that improves the regularity of the integrand, utilizing an adaptive integration technique, and exploiting parallelization. We first show that the “mollified” solution converges to the exact one as the mollifying parameter vanishes, then we illustrate the consistency and accuracy of the proposed method on several two- and three-dimensional test cases. Furthermore, we demonstrate the good scaling properties of the parallel implementation of the adaptive algorithm and we compare the proposed method with recently developed techniques for efficient FE assembly.
Book, Cameron; Hoffman, Matthew J.; Kachuck, Samuel B.; Hillebrand, Trevor R.; Price, Stephen F.; Perego, Mauro; Bassis, Jeremy N.
Viscoelastic rebound of the solid Earth upon the removal of ice loads has the potential to inhibit marine ice sheet instability, thereby forestalling ice-sheet retreat and global mean sea-level rise. The timescale over which the solid Earth - ice sheet system responds to changes in ice thickness and bedrock topography places a strong control on the spatiotemporal influence of this negative feedback mechanism. In this study, we assess the impact of solid-earth rheological structure on model projections of the retreat of Thwaites Glacier, West Antarctica, and the concomitant sea-level rise by coupling the dynamic ice sheet model MALI to a regional glacial isostatic adjustment (GIA) model. We test the sensitivity of model projections of ice-sheet retreat and associated sea-level rise across a range of four different solid-earth rheologies, forced by standard ISMIP6 ocean and atmospheric datasets for the RCP8.5 climate scenario. These model parameters are applied to 500-year, coupled ice-sheet - GIA simulations. For the mantle viscosity best supported by observations, the negative GIA feedback leads to a reduction in mass loss that remains above 20% after about a hundred years. Mass-loss reduction peaks at 50% around 2300, which is when a control simulation without GIA experiences its maximum rate of retreat. For a weaker solid-earth rheology that is unlikely but compatible with observational uncertainty, mass loss reduction remains above 50% after 2150. At 2100, mass loss reduction is 10% for the best-fit rheology and 25% for the weakest rheology. At the same time, we estimate that water expulsion from the rebounding solid Earth beneath the ocean near Thwaites Glacier may increase sea-level rise by up to 20% at five centuries. Additionally, the reduction in ice-sheet retreat caused by GIA is substantially reduced under stronger climate forcings, suggesting that the stabilizing feedback of GIA will also be an indirect function of emissions scenario. We hypothesize that feedbacks between the solid Earth - ice sheet system are controlled by a competition between the spatial extent and timescale of bedrock uplift relative to the rate of grounded ice retreat away from the region of most rapid unloading. Although uncertainty in solid-earth rheology leads to large uncertainty in future sea-level rise contribution from Thwaites Glacier, under all plausible parameters the GIA effects are too large to be ignored for future projections of Thwaites Glacier of more than a century.