Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.
Project 'Rolling Thunder' is a dish/Stirling demonstration project at Ft. Huachuca in southeastern Arizona. As part of the project, Sandia decided to retrofit a SOLO 161 Stirling engine on the CPG-460 at Ft. Huachuca. Although the SOLO 161 PCU has operated nearly flawlessly and the CPG-460 has been, for the most part, a solid and reliable component, integration of the SOLO PCU with the CPG-460 into a functional system required significant attention.
Materials Research Society Symposium - Proceedings
Newcomer, P.P.; Venturini, E.L.; Doyle, B.L.; Brice, D.K.; Schoene, H.
Lattice defects are introduced into the structure to suppress the motion of magnetic vortices and enhance the critical current density in high temperature superconductors. Point defects are not very effective pinning sites for the cuprate superconductors; however, extended defects, such as linear tracks, have been shown to be strong pinning sites. We study the superconducting cuprate Tl-2212 (the numbers designate Tl-Ba-Ca-Cu stoichiometry). Large enhancements of vortex pinning potential were observed in Tl-2212 after high-intermediate energy heavy-ion irradiations where non-continuous extended defects were induced at dE/dx of 9 to 15.2 keV/nm (60 MeV Au, 60 MeV Cu, and 30 MeV Au) and continuous linear defects were induced at 19.5 keV/nm (88 MeV Au). Our research addresses the question of pinning in highly anisotropic materials like Tl-2212 where the vortices are `pancakes' rather than `rods' and suitable defect structures may be discontinuous extended damage domains. The defect microstructure and the effectiveness of the pinning potential in Tl-2212 after irradiation by intermediate energy Au at lower dE/dx of 5-15 keV/nm, where recoils are more significant, is studied using high resolution transmission electron microscopy digital imaging and a SQUID magnetometer. The nature of the ion irradiation damage at these intermediate dE/dx will be correlated to the average vortex pinning potential and the TRIMRC calculations for recoils.
Thermally stimulated current (TSC) techniques provide information about oxide-trap charge densities and energy distributions in MOS (metal-oxide-semiconductor) capacitors exposed to ionizing radiation or high-field stress that is difficult or impossible to obtain via standard capacitance-voltage or current-voltage techniques. The precision and reproducibility of measurements through repeated irradiation/TSC cycles on a single capacitor is demonstrated with a radiation-hardened oxide, and small sample-to-sample variations are observed. A small increase in E′δ center density may occur in some non-radiation-hardened oxides during repeated irradiation/TSC measurement cycles. The importance of choosing an appropriate bias to obtain accurate measurements of trapped charge densities and energy distributions is emphasized. A 10 nm deposited oxide with no subsequent annealing above 400 °C shows a different trapped-hole energy distribution than thermally grown oxides, but a similar distribution to thermal oxides is found for deposited oxides annealed at higher temperatures. Charge neutralization during switched-bias irradiation is found to occur both because of hole-electron annihilation and increased electron trapping in the near-interfacial SiO2. Limitations in applying TSC to oxides thinner than approximately 5 nm are discussed.
This work considers the problem of planning optimal paths for a mobile robot traversing complex terrain. In addition to the existing obstacles, locations in the terrain where the slope is too steep for the mobile robot to navigate safely without tipping over become mathematically equivalent to extra obstacles. To solve the optimal path problem, the authors use a dynamic programming approach. The dynamic programming approach utilized herein does not suffer the difficulties associated with spurious local minima that the artificial potential field approaches do. In fact, a globally optimal solution is guaranteed to be found if a feasible solution exists. The method is demonstrated on several complex examples including very complex terrains.
One of our primary goals was to determine how well a laser Doppler vibrometer (LDV) could measure the structural dynamic response of a wind turbine that was parked in the field. We performed a series of preliminary tests in the lab to determine the basic limitations of the LDV for this application. We then instrumented an installed parked horizontal axis wind turbine with accelerometers to determine the natural frequencies, damping, and mode shapes of the wind turbine and rotor as a baseline for the LDV and our other tests. We also wanted to determine if LDV modal information could be obtained from a naturally (wind) excited wind turbine. We compared concurrently obtained accelerometer and LDV data in an attempt to assess the quality of the LDV data. Our test results indicate the LDV can be successfully used in the field environment of an installed wind turbine, but with a few restrictions. We were successful in obtaining modal information from a naturally (wind) excited wind turbine in the field, but the data analysis requires a large number of averaged data sets to obtain reasonable results. An ultimate goal of this continuing project is to develop a technique that will monitor the health of a structure, detect damage, and hopefully predict an impending component failure.
As the technology for horizontal axis wind turbines (HAWT) development matures, more novel techniques are required for the capture of additional amounts of energy, alleviation of loads and control of the rotor. One such technique employs the use of an adaptive blade that could sense the wind velocity or rotational speed in some fashion and accordingly modify its aerodynamic configuration to meet a desired objective. This could be achieved in either an active or passive manner, although the passive approach is much more attractive due to its simplicity and economy. As an example, a blade design might employ coupling between bending and/or extension, and twisting so that, as it bends and extends due to the action of the aerodynamic and inertial loads, it also twists modifying the aerodynamic performance in some way. These performance modifications also have associated aeroelastic effects, including effects on aeroelastic instability. To address the scope and magnitude of these effects a tool has been developed for investigating classical flutter and divergence of HAWT blades. As a starting point, an adaptive version of the uniform Combined Experiment Blade will be investigated. Flutter and divergence airspeeds will be reported as a function of the strength of the coupling and also be compared to those of generic blade counterparts.
The NWTC (National Wind Technology Center) Variable-Speed Test Bed turbine is a three-bladed, 10-meter, downwind machine that can be run in either fixed-speed or variable-speed mode. In the variable-speed mode, the generator torque is regulated, using a discrete-stepped load bank to maximize the turbine`s power coefficient. At rated power, a second control loop that uses blade pitch to maintain rotor speed essentially as before, i.e., using the load bank to maintain either generator power or (optionally) generator torque. In this paper, the authors will use this turbine to study the effect of variable-speed operation on blade damage. Using time-series data obtained from blade flap and edge strain gauges, the load spectrum for the turbine is developed using rainflow counting techniques. Miner`s rule is then used to determine the damage rates for variable-speed and fixed-speed operation. The results illustrate that the controller algorithm used with this turbine introduces relatively large load cycles into the blade that significantly reduce its service lifetime, while power production is only marginally increased.
We demonstrate that tilted planar ferroelectric domain boundaries create tilted second harmonic beams in nonphase-matched second harmonic generation, and that the tilt of the boundary can be deduced from the harmonic direction.
A resolution study, employing a 3D nonlinear optimization technique, has been undertaken to study the viability of magnetotelluric (MT) measurements to detect and characterize buried facilities that make weapons of mass destruction. A significant advantage of the MT method is that no active source is required because the method employs passive field emissions. Thus measurements can be carried out covertly. Findings indicate it is possible to image WMD facilities, including depth of burial and lateral extent if a sufficient number of measurements are taken on the perimeter of the facility. Moreover if a station measurement can be made directly over the facility then the resolution is improved accordingly. In all cases it was not possible to image the base of the facility with any confidence as well as provide any precise inferences on the facility electrical conductivity. This later finding, however, is really not that critical since knowledge of facility geometry is far more important than knowledge of its conductivity. For the WMD problem it is recommended that MT measurements be made solely with the magnetic field ratios. In this context it would then be possible to deploy with far greater ease small coils about a suspected facility and would allow for the measurements to be conducted in a more covert manner. Before testing such a measurement system in the field, however, it would be necessary to carry out a similar resolution analysis as was done with MT measurements based on electric and magnetic fields. This is necessary to determine sensitivity of the proposed measurement to underground facilities along with needed data coverage and quality. Such a study is indispensable in producing useful reconstructions of underground facilities.
Proton implantation in GaN is found to reduce the free carrier density through two mechanisms - first, by creating electron and hole traps at around Ec-0.8eV and Ev+0.9eV that lead to compensation in both n- and p-type material, and second, by leading to formation of (AH)O complexes, where A is any acceptor (Mg, Ca, Zn, Be, Cd). The former mechanism is usefid in creating high resistivity regions for device isolation, whereas the latter produces unintentional acceptor passivation that is detrimental to device performance. The strong affinity of hydrogen for acceptors leads to markedly different redistribution behavior for implanted in n- and p-GaN due to the chemical reaction to form neutral complexes in the latter. The acceptors may be reactivated by simple annealing at 2600{degrees}C, or by electron injection at 25-150{degrees}C that produces debonding of the (AH) centers. Implanted hydrogen is also strongly attracted to regions of strain in heterostructure samples during annealing, leading to pile-up at epi-epi and epi-substrate interfaces. II? spectroscopy shows that implanted hydrogen also decorates VG, defects in undoped and n-GaN.
Since their invention in the mid-1960's, surface acoustic wave (SAW) devices have become popular for a wide variety of applications. SAW devices represent a low-cost and compact method of achieving a variety of electronic signal processing functions at high frequencies, such as RF filters for TV or mobile wireless communications [1]. SAW devices also provide a convenient platform in chemical sensing applications, achieving extremely high sensitivity to vapor phase analytes in part-per-billion concentrations [2]. Although the SAW acoustic mode can be created on virtually any crystalline substrate, the development of SAW technology has historically focused on the use of piezoelectric materials, such as various orientations of either quartz or lithium niobate, allowing the devices to be fabricated simply and inexpensively. However, the III-V compound semiconductors, and GaAs in particular, are also piezoelectric as a result of their partially covalent bonding and support the SAW acoustic mode, allowing for the convenient fabrication of SAW devices. In addition, GaAs microelectronics has, in the past decade, matured commercially in numerous RF wireless technologies. In fact, GaAs was recognized long ago as a potential candidate for the monolithic integration of SAW devices with microelectronics, to achieve compact RF signal processing functions [3]. The details of design and fabrication of SAW devices can be found in a variety of references [1].
A large-scale field demonstration comparing and contrasting final landfill cover designs has been constructed and is currently being monitored. Four alternative cover designs and two conventional designs (a RCRA Subtitle `D' Soil Cover and a RCRA Subtitle `C' Compacted Clay Cover) were constructed side-by-side for direct comparison. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper provides an overview of the construction costs of each cover design.
The role of the inert gas additive (He, Ar, Xe) to C12 Inductively Coupled Plasmas for dry etching of GaAs and GaSb was examined through the effect on etch rate, surface roughness and near-surface stoichiometry. The etch rates for both materials go through a maximum with Clz 0/0 in each type of discharge (C12/'He, C12/Ar, C12/Xc), reflecting the need to have efficient ion-assisted resorption of the etch products. Etch yields initially increase strongly with source power as the chlorine neutral density increases, but decrease again at high powers as the etching becomes reactant-limited. The etched surfaces are generally smoother with Ax or Xe addition, and maintain their stoichiometry.
Dual control volume grand canonical molecular dynamics (DCV-GCMD) is a boundary-driven non-equilibrium molecular dynamics technique for simulating gradient driven diffusion in multi-component systems. Two control volumes are established at opposite ends of the simulation box. Constant temperature and chemical potential of diffusing species are imposed in the control volumes. This results in stable chemical potential gradients and steady-state diffusion fluxes in the region between the control volumes. We present results and detailed analysis for a new constant-pressure variant of the DCV-GCMD method in which one of the diffusing species for which a steady-state diffusion flux exists does not have to be inserted or deIeted. Constant temperature, pressure and chemical potential of all diffusing species except one are imposed in the control volumes. The constant-pressure method can be applied to situations in which insertion and deletion of large molecules would be prohibitively difficult. As an exampIe, we used the method to shnulate diffusion in a biruuy mixture of spherical particles with a 2:1 size ratio. Steady-state diffusion fluxes of both diffbsi.ng species were established. The constant-pressure diffision coefficients agreed closely with the results of the standard constant-volume calculations. In addition, we show how the concentration, chemical potential and flux profiles can be used to calculate kwd binary and Maxwell-Stefim diffusion coefficients. In the case of the 2:1 size ratio mixture, we found that the binary dlffision coefficients were asymmetric and composition dependent, whereas the Maxwell-Stefan diffision coefficients changed very little with composition and were symmetric. This last result verified that the Gibbs-Duhem relation was satisfied locally, thus validating the assumption of local equilibrium.
The fundamental difficulties incorporating experimentally obtained-boundary disorientation distributions (BMD) into 3D microstructural models are discussed. An algorithm is described which overcomes these difficulties. The boundary misorientations are treated as a statistical ensemble which is evolved toward the desired BMD using a Monte Carlo method. The application of this algorithm to a number complex arbitrary BMDs shows that the approach is effective for both conserved and non-conserved textures. The algorithm is successfully used to create the BMDs observed in deformation microstructure containing both incidental dislocation boundaries (IDBs) and geometrically necessary boundaries (GNBs).
The effects of solute dragon grain growth kinetics were studied in two dimensional (2-D) computer simulations by using a diffuse-interface field model. It is shown that, in the low velocity / low driving force regime, the velocity of a grain boundary motion departs from a linear relation with driving force (curvature) with solute drag. The nonlinear relation of migration velocity and driving force comes from the dependence of grain boundary energy and width on the curvature. The growth exponent m of power growth law for a polycrystalline system is affected by the segregation of solutes to grain boundaries. With the solute drag, the growth exponent m can take any value between 2 and 3 depending on the ratio of lattice diffusion to grain boundary mobility. The grain size and topological distributions are unaffected by solute drag, which are the same as those in a pure system.
The nucleation and growth of cracks at critical interfaces can degrade electrical and mechanical performance of electronic assemblies. Sandia National Laboratories is working to develop a fracture mechanics-based approach for assessing the reliability of components containing interfaces and subjected to thermal/mechanical fatigue. Models are being developed to predict the nucleation of a crack-like flaw in the vicinity of an interface, the path of crack propagation (along interface or into substrate), and the conditions for crack propagation. In addition, interfacial fracture toughness data are being generated to support model development. This paper summarizes an experimental study aimed at measuring the fracture toughness of epoxy-to-substrate interfaces that are representative of those found in bonded and encapsulated electronic components.
A phase-field model for grain growth is briefly described. In this model, a poly-crystalline microstructure is represented by multiple structural order parameter fields whose temporal and spatial evolutions follow the time-dependent Ginzburg-Landau (TDGL) equations. Results from phase-field simulations of two-dimensional (2D) grain growth will be summarized and preliminary results on three-dimensional (3D) grain growth will be presented. The physical interpretation of the structural order parameter fields and the efficient and accurate semi-implicit Fourier spectral method for solving the TDGL equations will be briefly discussed.
The research summarized in this paper is part of a multiyear effort focused on evaluating the viability of wavelet bases for the solution of partial differential equations. The primary objective for this work has been to establish a foundation for hierarchical/wavelet simulation methods based upon numerical performance, computational efficiency, and the ability to exploit the hierarchical adaptive nature of wavelets. This work has demonstrated that hierarchical bases can be effective for problems with a dominant elliptic character. However, the strict enforcement of orthogonality in the usual L 2 sense is less desirable than orthogonality in the energy norm. This conclusion has led to the development of a multi-scale lineax finite element based on a hierarchical change-of-basis. This work considers the numerical and computational performance of the hierarchical Schauder basis in a Galerkin context. A unique row-column lumping procedure is developed with multi-scale solution strategies for 1-D and 2-D elliptic partial differential equations.
An attempt is made to identify preferred values for the work functions of the rare earth elements by correlating the atomic chemical potential with the work function of the bulk elements. Trends in the alkali and alkali earth metal are evaluated in the same context. Strong linear correlation between the two quantities is observed within the IA, 11A, and IIIB (Se, Y, La) groups. Within the lanthanide series the nature of the correlation between the metallic radius and the work function suggests a dependence on the total angular momentum.
Advanced rechargeable lithium-ion batteries are presently being developed and commercialized worldwide for use in consumer electronics, military and space applications. At Sandia National Laboratories we have used different electrochemical techniques such as impedance and charge/discharge at ambient and subambient temperatures to probe the various electrochemical processes that are occurring in Li-ion cell. The purpose of this study is to identify the component that reduces the cell performance at subambient temperatures. Our impedance data suggest that while the variation in the electrolyte resistance between room temperature and {minus}20 C is negligible the anode electrolyte interfacial resistance increases by an order of magnitude in the same temperature regime. We believe that the solid electrolyte interface (SEI) layer on the carbon anode may be responsible for the increase in cell impedance. We have also evaluated the cells in hybrid mode with capacitors. High-current operation in the hybrid mode allowed fill usage of the Li-ion cell capacity at 25 C and showed a factor of 5 improvement in delivered capacity at {minus}20 C.
Silver/glass mirrors have excellent optical properties but need a method of support in order to be used in concentrating solar thermal systems. In collaboration with the Cummins dish/Stirling development program, they started investigating sandwich construction as a way to integrate silver/glass mirrors into solar optical elements. In sandwich construction, membranes such as sheet metal or plastic are bonded to the front and back of a core (like a sandwich). For solar optical elements, a glass mirror is bonded to one of the membranes. This type of construction has the advantages of a high strength-to-weight ratio, and reasonable material and manufacturing cost. The inherent stiffness of sandwich construction mirror panels also facilitates large panels. This can have cost advantages for both the amount of hardware required as well as reduced installation and alignment costs. In addition, by incorporating the panels into the support structure reductions in the amount of structural support required are potentially possible.
A 30-kVA Trace Technologies hybrid power processor was specified and tested at the Sandia inverter test facility. Trace Technologies involving the control system, in response to suggestions made modifications, primarily by Sandia and Arizona Public Service (APS) personnel. The modifications should make the inverter more universally applicable and less site-specific so that it can be applied in various sites with minimal field interaction required from the design engineer. The project emphasized the importance of battery management, generator selection, and site load management to the performance and reliability of hybrid power systems.
We describe Chemical Solution Deposition (CSD) processes by which Strontium Bismuth Tantalate (SBT) thin films can be prepared at temperatures as low as 550 C. In this paper, we will present strategies used to optimize the properties of the films including solution chemistry, film composition, the nature of the substrate (or bottom electrode) used, and the thermal processing cycle. Under suitable conditions, {approximately} 1700 {angstrom} films can be prepared which have a large switchable polarization (2P{sub r} > 10{micro}C/cm{sup 2}), and an operating voltage, defined as the voltage at which 0.80 x 2P{sub r} max is switched, 2.0V. We also describe an all-alkoxide route to SBT films from which SBT can be crystallized at 550 C.
Commercial microchips work well in their intended environments. However, generic microchips will not fimction correctly if exposed to sufficient amounts of ionizing radiation, the kind that satellites encounter in outer space. Modern CMOS circuits must overcome three specific concerns from ionizing radiation: total-dose, single-event, and dose-rate effects. Minority-carrier devices such as bipolar transistors, optical receivers, and solar cells must also deal with recombination-generation centers caused by displacement damage, which are not major concerns for majority-carrier CMOS devices. There are ways to make the chips themselves more resistant to radiation. This extra protection, called radiation hardening, has been called both a science and an art. Radiation hardening requires both changing the designs of the chips and altering the ways that the chips are manufactured.
We investigated the interaction of dissolved actinides Th, U, Np Zgpu, and Am, with a pure and a mixed culture of halophilic bactezia isolated from the Waste Isolation H.Iot Plant repository under anaerobic conditions to evaluate their potentiaI transport as biocolloids from the waste site. The sizes of the bacterial cells studied ranged from ().54 x 0.48 pm to 7.7 x 0.67pm Using sequential mimofiltration, we determined the ~~ation of actinides with fi-ee-living (mobile) bacterial cells suspended in a fluid medium containing. NaCl or M=W12 brine, at various phaes of their growth cycIes. The number of suspended kcteria rangy-d born 106 to 109 cells ml-*. Tine amount of actinide associatd with the wspend~ cell fraction (cakzdated & mol cell-*) was very Iow: Th, 10-*2; U, 10-1s - 10-lS; - ~ Np, 1o-15- 10-19; Pu, 10-ls -10-21 ; and h, 10-1* - 10-*9 ; and it varied with the bacteihl - CUIture studied. l%e differe&es in the asswiation are amibuted to the extent of bioamxmdation and biosorption by the bacteria pH, the compo&on of the brine, and the speziation and bioavaiIability of the actinides.
The search for a photonic crystal to confine optical waves in all three dimensions (3D) has proven to be a formidable task. It evolves from an early theoretical suggestion [1,2], a brief skepticism [3-5] and triumph in developing the mm-wave [6-8] and infrared 3D photonic crystals [9]. Yet, the challenge remains, as the ultimate goal for optoelectronic applications is to realize a 3D crystal at X=1.5 pm communication wavelengths. Operating at visible and near infrared wavelengths, X=1-2 pm, a photonic crystal may enhance the spontaneous emission rate [1, 10] and give rise to a semiconductor lasers with a zero lasing threshold[11, 12]. Another important application is optically switching, routing and interconnecting light [13,14] with an ultrafast transmission speed of terabits per second. A photonic crystal may also serve as a platform for integrating an all-optical circuitry with multiple photonic components, such as waveguides and switches, built on one chip [15]. In this Letter, we report on the successful fabrication of a working 3D crystal operating at optical L The minimum feature size of the 3D structure is 180 nanometers. The 3D crystal is free from defects over the entire 6-inch silicon wafer and has an absolute photonic band gap centered at A.-1.6 pm. Our data provides the first conclusive evidence for the existence of a full 3D photonic band gap in optical A. This development will pave the way to tinier, cheaper, more effective waveguides, optical switches and lasers.
The effects of the additive noble gases He, Ar and Xe on chlorine-based Inductively Coupled Plasma etching of InP, InSb, InGaP and InGaAs were studied as a function of source power, chuck power and discharge composition. The etch rates of all materials with C12/He and C12/Xe are greater than with C12/Ar. Etch rates in excess of 4.8 pndmin for InP and InSb with C12/He or C12/Xe, 0.9 pndmin for InGaP with C12/Xe, and 3.8 prdmin for InGaAs with Clz/Xe were obtained at 750 W ICP power, 250 W rf power, - 1570 C12 and 5 mTorr. All three plasma chemistries produced smooth morphologies for the etched InGaP surfaces, while the etched surface of InP showed rough morphology under all conditions.
Constraints on assembly plans vary depending on product, assembly facility, assembly volume, and many other factors. Assembly costs and other measures to optimize vary just as widely. To be effective, computer-aided assembly planning systems must allow users to express the plan selection criteria that appIy to their products and production environments. We begin this article by surveying the types of user criteria, both constraints and quality measures, that have been accepted by assembly planning systems to date. The survey is organized along several dimensions, including strategic vs. tactical criteria; manufacturing requirements VS. requirements of the automated planning process itself and the information needed to assess compliance with each criterion. The latter strongly influences the efficiency of planning. We then focus on constraints. We describe a framework to support a wide variety of user constraints for intuitive and efficient assembly planning. Our framework expresses all constraints on a sequencing level, specifying orders and conditions on part mating operations in a number of ways. Constraints are implemented as simple procedures that either accept or reject assembly operations proposed by the planner. For efficiency, some constraints are supplemented with special-purpose modifications to the planner's algorithms. Fast replanning enables an interactive plan-view-constrain-replan cycle that aids in constraint discovery and documentation. We describe an implementation of the framework in a computer-aided assembly planning system and experiments applying the system to a number of complex assemblies, including one with 472 parts.
A 2-D finite element code has been developed for the solution of arbitrary geometry cable SGEMP and box IEMP problems. The quasi- static electric field equations with radiation- induced charge deposition and radiation-induced conductivity y are numerically solved on a triangular mesh. Multiple regions of different dielectric materials and multiple conductors are permitted.
As any structure ages, its structural characteristics will also change. The goal of this work was to determine if modal response data fkom a wind turbine could be used in the detection of damage. The input stimuli to the wind turbine were from traditional modal hammer input and natural wind excitation. The structural response data was acquired using accelerometers mounted on the rotor of a parked and undamaged horizontal-axis wind turbine. The bolts at the root of one of the three blades were then loosened to simulate a damaged blade. The structural response data of the rotor was again recorded. The undamaged and damage-simulated datasets were compared using existing darnage detection algorithms. Also, a novel algorithm for combining the results of different damage detection algorithms was utilized in the assessment of the data. This paper summarizes the code development and discusses some preliminary damage detection results.
The use of a digital infrared as a non-destructive evaluation thermography camera (NDE) tool was ex- plored in two separate wind turbine blade fatigue tests. The fwst test was a fatigue test of part of a 13.1 meter wood-epoxy-composite blade. The second test was on a 4.25 meter pultruded fiber glass blade section driven at several mechanical resonant frequencies. The digital infrared camera can produce images of either the static temperature distribution on the surface of the specimen, or the dynamic temperature distribution that is in phase with a specific frequency on a vibrating specimen. The dynamic temperature distribution (due to thermoplastic effects) gives a measure of the sum of the principal stresses at each point on the surface. In the wood- epoxy-composite blade fatigue test, the point of ultimate failure was detected long before failure occurred. The mode shapes obtained with the digital infrared camera, from the resonant blade tests, were in very good agree- ment with the finite-element calculations. In addition, the static temperature images of the resonating blade showed two areas that contained cracks. Close-up dy- namic inf%red images of these areas showed the crack structure that agreed with subsequent dye-penetrant analysis.
We have completed and exercised a communication framework called CHI (CLOS to HTML Interface) by which agents can communicate with humans. CHI follows HTTP (HyperText Transfer Protocol) and produces HTML (HyperText Markup Language) for use by WWW (World-Wide Web) browsers. CHI enables the rapid and dynamic construction of interface mechanisms. The essence of CHI is automatic registration of dynamically generated interface elements to named objects in the agent's internal environment. The agent can access information in these objects at will. State is preserved, so an agent can pursue branching interaction sequences, activate failure recovery behaviors, and otherwise act opportunistically to maintain a conversation. The CHI mechanism remains transparent in multi-agent, multi-user environments because of automatically generated unique identifiers built into the CHI mechanism. In this paper we discuss design, language, implementation, and extension issues, and, by way of illustration, examine the use of the general CHI/HCHI mechanism in a specific international electronic commerce system. We conclude that the CHI mechanism is an effective, efficient, and extensible means of the agent/human communication.
We have successfully developed a method for fabricating scandate-based thermionic emitters in thin film form. The primary goal of our effort is to develop thin film emitters that exhibit low work fimction, high intrinsic electron emissivity, minimum thermal activation properties and that can be readily incorporated into a microgap converter. Our approach has been to incorporate BaSrO into a SqOq matrix using rf sputtering to produce thin films. Diode testing has shown the resulting films to be electron emissive at temperatures as low as 900 K with current densities of 0.1 mA.cm-2 at 1100 K and saturation voltages. We calculate an approximate maximum work function of 1.8 eV and an apparent emission constant (Richardson's constant, A*) of 36 mA.cm-2.K-2. Film compositional and structural analysis shows that a significant surface and subsurface alkaline earth hydroxide phase can form and probably explains the limited utilization and stability of Ba and its surface complexes. The flexibility inherent in sputter deposition suggests alternate strategies for eliminating undesirable phases and optimizing thin film emitter properties.
The Video Scanning Hartmann Optical Tester (VSHOT) is a laser ray-trace tool for measuring the slope error of solar concentrator mirrors. The VSHOT measurements made on two, 8.5-m diameter, Distal II dishes represent its first use on a concentrator installed and operating in the field. A number of valuable lessons were learned regarding the use of the VSHOT for outdoor testing. The two dishes were found to have overall figure-of-merit RMS slope errors from an ideal parabola of 2.99 and 3.18 milliradians. The VSHOT measurements compare well qualitatively with distant observer photographs made using a colored concentric ring target.
We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.
International Journal of Rock Mechanics and MIning Science
Wawersik, W.R.
Numerical codes have become indispensable for designing underground structures and interpretating the behavior of geologic systems. Because of the complexities of geologic systems, however, code calculations often are associated with large quantitative uncertainties. This papers presents three examples to demonstrate the value of laboratory(or bench scale) experiments to evaluate the predictive capabilities of such codes with five major conclusions: Laboratory or bench-scale experiments are a very cost-effective, controlled means of evaluating and validating numerical codes, not instead of but before or at least concurrent with the implementation of in situ studies. The design of good laboratory validation tests must identifj what aspects of a code are to be scrutinized in order to optimize the size, geometry, boundary conditions, and duration of the experiments. The design of good and sometimes difficult numerical analyses and sensitivity studies. Laboratory validation tests must involve: Good validation experiments will generate independent data sets to identify the combined effect of constitutive models, model generalizations, material parameters, and numerical algorithms. Successfid validations of numerical codes mandate a close collaboration between experimentalists and analysts drawing from the full gamut of observations, measurements, and mathematical results.
Highly crystalline, size-selected silicon (Si) nanocrystals in the size range 2-10 nm were grown in inverse micelles and their optical absorption and photoluminescence (PL) properties were studied. High resolution TEM and electron diffraction results show that these nanocrystals retain their cubic diamond stuctures down to sizes {approximately}4 nm in diameter, and optical absorption data suggest that this structure and bulk-like properties are retained down to the smallest sizes produced ({approximately}1.8 nm diameter containing about 150 Si atoms). High pressure liquid chromatography techniques with on-line optical and electrical diagnostics were developed to purify and separate the clusters into pure, monodisperse populations. The optical absorption revealed features associated with both the indirect and direct bandgap transitions, and these transitions exhibited different quantum confinement effects. The indirect bandgap shifts from 1.1 eV in the bulk to {approximately}2.1 eV for nanocrystals {approximately}2 nm in diameter and the direct transition at r(l_"X - r15) blue shifts by 0.4 eV from its 3.4 eV bulk value over the same size range. Tailorable, visible, room temperature PL in the range 700-350 nm (1.8 - 3.5 eV) was observed from these nanocrystals. The most intense PL was in the violet region of the spectrum ({approximately}400 nm) and is attributed to direct electron-hole recombination. Other less intense PL peaks are attributed to surface state and to indirect bandgap recombination. The results are compared to earlier work on Si clusters grown by other techniques and to the predictions of various model calculations. Currently, the wide variations in the theoretical predictions of the various models along with considerable uncertainties in experimental size determination for clusters less than 3-4 nm, make it difficult to select among competing models.
Rectangular trench profiles are modeled with analytic etch rates determined from measured ion distribution functions. The pattern transfer step for this plasma etch is for trilayer lithography. Argon and chlorine angular ion energy distribution functions measured by a spherical collector ring analyzer are fit to a sum of drifting Maxwellian velocity distribution functions with anisotropic temperatures. The fit of the model ion distribution functions by a simulated annealing optimization procedure converges adequately for only two drifting Maxwellians. The etch rates are proportional to analytic expressions for the ion energy flux. Numerical computation of the etch profiles by integration of the characteristic equations for profile points and connection of the profiles points is efficient.
In this paper we report absolute intensities of vacuum ultraviolet and near ultraviolet emission lines (4.8 eV to 18 eV ) for aluminum etching discharges in an inductively coupled plasma reactor. We report line intensities as a function of wafer type, pressure, gas mixture and rf excitation level. IrI a standard aluminum etching mixture containing C12 and BC13 almost all the light emitted at energies exceeding 8.8 eV was due to neutral atomic chlorine. Optical trapping of the WV radiation in the discharge complicates calculations of VUV fluxes to the wafer. However, we see total photon fluxes to the wailer at energies above 8.8 eV on the order of 4 x 1014 photons/cm2sec with anon- reactive wafer and 0.7 x 10 `4 photons/cm2sec with a reactive wtier. The maj ority of the radiation observed was between 8.9 and 9.3 eV. At these energies, the photons have enough energy to create electron-hole pairs in Si02, but may penetrate up to a micron into the Si02 before being absorbed. Relevance of these measurements to vacuum-W photon-induced darnage of Si02 during etching is discussed.
To examine the forces of acid-base adhesive interactions at the molecular level, we utilize the scanning probe Interracial Force Microscope (IFM). Unlike cantilever-based atomic force microscopes, the EM is a non-compliant, mechanically stable probe that provides a complete adhesive profile without jump-to-contact. In this way, we are able to quantitatively measure the work of adhesion and bond energies at well-defined, nanometer-scale single asperity contacts. In particular, we will discuss the displacement-controlled adhesive forces between self-assembled monolayer of functionalized alkanethiols strongly bound to a gold substrate and a similarly functionalized tip. We also discuss a method utilizing decoupled lateral and normal force sensors to simultaneously observe the onset of both friction and chemical bond formation. Measurements show that friction can be directly attributed to bond formation and rupture well before repulsive contact.
To probe directly the analyte/film interactions that characterize molecular recognition in gas sensors, we recorded changes to the in-situ surface vibrational spectra of specifically fictionalized surface acoustic wave (SAW) devices concurrently with analyte exposure and SAW measurement of the extent of sorption. Fourier-lmnsform infrared external- reflectance spectra (FTIR-ERS) were collected from operating 97-MH2 SAW delay lines during exposure to a range of analytes as they interacted with thin-film coatings previously shown to be selective: cyclodextrins for chiral recognition, Ni-camphorates for Lewis bases such as pyridine and organophosphonates, and phthalocyanines for aromatic compounds. In most cases where specific chemical interactions-metal coordination, "cage" compound inclusion, or z stacking-were expected, analyte dosing caused distinctive changes in the IR spectr~ together with anomalously large SAW sensor responses. In contrast, control experiments involving the physisorption of the same analytes by conventional organic polymers did not cause similar changes in the IR spectra, and the SAW responses were smaller. For a given conventional polymer, the partition coefficients (or SAW sensor signals) roughly followed the analyte fraction of saturation vapor pressure. These SAW/FTIR results support earlier conclusions derived from thickness-shear mode resonator data.
Patterning the group-IH nitrides has been challenging due to their strong bond energies and relatively inert chemical nature as compared to other compound semiconductors. Plasma etch processes have been used almost exclusively to pattern these films. The use of high-density plasma etch systems, including inductively coupled plasmas (ICP), has resulted in relatively high etch rates (often greater than 1.0 pmhnin) with anisotropic profiles and smooth etch morphologies. However, the etch mechanism is often dominated by high ion bombardment energies which can minimize etch selectivity. The use of an ICP-generated BCl~/C12 pkyma has yielded a highly versatile GaN etch process with rates ranging from 100 to 8000 A/rnin making this plasma chemistry a prime candidate for optimization of etch selectivity. In this study, we will report ICP etch rates and selectivities for GaN, AIN, and InN as a function of BCl~/Clz flow ratios, cathode rf-power, and ICP-source power. GaN:InN and GaN:AIN etch selectivities were typically less than 7:1 and showed the strongest dependence on flow ratio. This trend maybe attributed to faster GaN etch rates observed at higher concentrations of atomic Cl which was monitored using optical emission spectroscopy (OES). ~E~~~~f:~ INTRODUCTION DEC j 4898 Etch selectivi
At the 1995 IEEE Symposium on Assembly and Task Planning, Sandia National Laboratories introduced the Archimedes 2 Software Tool [2]. The system was described as a second-generation assembly planning system that allowed preliminmy application of awembly planning for industry, while solidly supporting further research in planning techniques. Sandia has worked closely with indust~ and academia over the last four years. The results of these working relationships have bridged a gap for the next generation in assembly planning. Zke goal of this paper is to share Sandia 's technological advancements in assembly planning over the last four years and the impact these advancements have made on the manufacturing communip.
When a product concept emerges, the manufacturing engineer is asked to sketch out a production strategy and estimate its cost. The engineer is given an initial product design, along with a schedule of expected production volumes. The engineer then determines the best approach to manufacturing the product, comparing a variey of alternative production strategies. The engineer must consider capital cost, operating cost, lead-time, and other issues in an attempt to maximize pro$ts. After making these basic choices and sketching the design of overall production, the engineer produces estimates of the required capital, operating costs, and production capacity. 177is process may iterate as the product design is refined in order to improve its pe~ormance or manufacturability. The focus of this paper is on the development of computer tools to aid manufacturing engineers in their decision-making processes. This computer sof~are tool provides aj?amework in which accurate cost estimates can be seamlessly derivedfiom design requirements at the start of any engineering project. Z+e result is faster cycle times through first-pass success; lower ll~e cycie cost due to requirements-driven design and accurate cost estimates derived early in the process.
Designing products for ~ assembly and disassembly during its entire Iifecycle for purposes including service, field repair, upgrade, and disposal is a process that involves many disciplines. In additiou finding the best solution often involves considering the design as a whole and by considering its intended Iifecycle. DifFerent goals and cortstmints (compared to initial assembly) require us to re-visit the significant fi,mdamental assumptions and methods that underlie current assembly planning techniques. Previous work in this area has been limited to either academic studies of assembly planning or applied studies of lifecycle assembly processes, which give no attention to automatic planning. It is believed that merging these two areas will result in a much greater ability to design for, analyze, and optimize the disassembly and assembly processes.
We describe a general strategy we have found effective for parallelizing solid mechanics simula- tions. Such simulations often have several computationally intensive parts, including finite element integration, detection of material contacts, and particle interaction if smoothed particle hydrody- namics is used to model highly deforming materials. The need to balance all of these computations simultaneously is a difficult challenge that has kept many commercial and government codes from being used effectively on parallel supercomputers with hundreds or thousands of processors. Our strategy is to load-balance each of the significant computations independently with whatever bal- ancing technique is most appropriate. The chief benefit is that each computation can be scalably paraIlelized. The drawback is the data exchange between processors and extra coding that must be written to maintain multiple decompositions in a single code. We discuss these trade-offs and give performance results showing this strategy has led to a parallel implementation of a widely-used solid mechanics code that can now be run efficiently on thousands of processors of the Pentium-based Sandia/Intel TFLOPS machine. We illustrate with several examples the kinds of high-resolution, million-element models that can now be simulated routinely. We also look to the future and dis- cuss what possibilities this new capabUity promises, as well as the new set of challenges it poses in material models, computational techniques, and computing infrastructure.
We propose a multi length scale approach to modeling recrystallization which links a dislocation model, a cell growth model and a macroscopic model. Although this methodology and linking framework will be applied to recrystallization, it is also applicable to other types of phase transformations in bulk and layered materials. Critical processes such as the dislocation structure evolution, nucleation, the evolution of crystal orientations into a preferred texture, and grain size evolution all operate at different length scales. In this paper we focus on incorporating experimental measurements of dislocation substructures, rnisorientation measurements of dislocation boundaries, and dislocation simulations into a mesoscopic model of cell growth. In particular, we show how feeding information from the dislocation model into the cell growth model can create realistic initial microstructure.
A two-phase, Nb-Cr-Ti alloy (bee+ C15 Laves phase) has been developed using several alloy design methodologies. In effort to understand processing-microstructure-property relationships, diffment processing routes were employed. The resulting microstructure and mechanical properties are discussed and compared. Plasma arc-melted samples served to establish baseline, . . . as-cast properties. In addition, a novel processing technique, involving decomposition of a supersaturated and metastable precursor phase during hot isostatic pressing (HIP), was used to produce a refined, equilibrium two-phase microstructure. Quasi-static compression tests as a ~ function of temperature were performed on both alloy types. Different deformation mechanisms were encountered based upon temperature and microstructure.
The generation of surface defects on electron cyclotron resonance (ECR) plasma derived aluminum oxide films has been studied. We find that Cl active O vacancies can be generated using electron and ion irradiation yielding surface concentrations of 3 xl 013 to 1X1014 sites"cm-2. These values correspond to surface defect concentrations of 3 to 10% when compared to ordered, crystalline u-alumina. The vacancies appear to be responsible for increased surface O concentrations when immersed in water. Anodic polarization of irradiated films yields a decrease in the stable pitting potential which correlates with electron dose.
For nearly fifty years the US held a dominant position in research and development in the free world. The situation has changed dramatically in the last decade. Countries around the world realize that to foster sustainable economic growth, they must build and maintain a foundation in science and technology. The time in which a country could base its gross national product solely on extraction of raw materials or on people-intensive manufacturing is drawing to a close. The funding for research and development has been growing in the rest of the world, while US expenditures have not kept pace. In 1961, the United States funded 71 `?40 of the world's R&D. It is estimated that the US contribution to research and development fimding today has reached the 3 3o/0 level, and will drop to 26o/0 of the world's total by 2003.1 In 1981 US government spending per capita on non-defense research and development was nearly fifty percent above our major competitors; by 2002 it is projected to be f@ percent below them.2 This trend has a profound impact on how research and development institutions in the United States plan for their future technical growth. Sandia National Laboratories, as one of the largest US-government tided research establishments, has been watching this trend for some time. %ndi~ focusing on the Laboratories' missions in nuclear weapons and related defense systems, energy security, environmental integrity, and emerging national challenges, is committed to bringing the best in world-class technology to bear on the nation's problems. We realize maintaining our state-of-the-art technolo=~ base requires we look not only to domestic sources in universities, industries and other laboratories, but also to sources overseas. The realization that we must be "worldwide gatherers of technology" has led Sandia National Laboratories to consider the question of international partnering in some detaiI. As a national laboratory with a national security mission we are well aware of the issues that we face in pursuing international collaborations. In order to make the proper decisions, we are interested in understanding the history of such partnerships, when they are appropriate, why we expect them to be important, the risks they present and what we can do to mitigate those risks.
BC13, with addition of Nz, Ar or Hz, is found to provide smooth anisotropic pattern transfer in GaAs, GaN, GaP, GaSb and AIGriAs under Inductively Coupled Plasma conditions, Maxima in the etch rates for these materials are observed at 33% N2 or 87$'40 Hz (by flow) addition to BC13, whereas Ar addition does not show this behavior. Maximum etch rates are typically much higher for GaAs, Gap, GaSb and AIGaAs (-1,2 @rein) than for GaN (-0.3 ymu'min) due to the higher bond energies of the iatter. The rates decrease at higher pressure, saturate with source power (ion flux) and tend to show maxima with chuck power (ion energy). The etched surfaces remain stoichiometric over abroad range of plasma conditions.
We develop a general model that describes the electrical responses of thickness shear mode resonators subject to a variety of surface loadkgs. The model incorporates a physically diverse set of single component loadings, including rigid solids, viscoelastic media and fluids (Newtonian or Maxwellian). The model allows any number of these components to be combined in any configuration. Such multiple loadings are representative of a variety of physical situations encountered in electrochemical and other liquid phase applications, as well as gas phase applications. In the general case, the response of the composite is not a linear combination of the individual component responses. We discuss application of the model in a qualitative diagnostic fashion, to gain insight into the nature of the interracial structure, and in a quantitative fashion, to extract appropriate physical parameters, such as liquid viscosity and density and polymer shear moduli.
Electronic structure calculations frequently invoke periodic boundary conditions to solve for electrostatic potentials. For systems that are electronically charged, or contain dipole (or higher) moments, this artifice introduces spurious potentials due to the interactions between the system and multipole moments of its periodic images in aperiodic directions. I describe a method to properly handle the multipole moments of the electron density in electronic structure calculations using periodic boundary conditions. The density for which an electrostatic potential is to be evaluated is divided into two pieces. A local density is constructed that matches the desired moments of the full density, and its potential computed treating this density as isolated. With the density of this local moment countercharge removed from the full density, the remainder density lacks the troublesome moments and its electrostatic potential can be evaluated accurately using periodic boundary conditions.
In organometallic vapor phase epitaxial growth of Gail on sapphire, the role of the low- temperature-deposited interlayers inserted between high-temperature-grown GaN layers was investigated by in situ stress measurement, X-ray diffraction, and transmission electron microscopy. Insertion of a series of low temperature GaN interlayers reduces the density of threading dislocations while simultaneously increasing the tensile stress during growth, ultimately resulting in cracking of the GaN film. Low temperature AIN interlayers were found to be effective in suppressing cracking by reducing tensile stress. The intedayer approach permits tailoring of the film stress to optimize film structure and properties.
In this work, we report the realization of a series of silicon 3D photonic crystals operating in the infrared (IR), mid-IR and most importantly the near-IR (k= 1 -2pm) wavelengths. The structure maintains its crystal symmetry throughout the entire 6-inches wafer and holds a complete photonic bandgap.
The Waste Isolation Pilot Plant is a mined, geologic repository designed for permanent disposal of transuranic waste. The facility is owned by the United States Department of Energy, and licensed for operations by the Environmental Protection Agency. Compliance with license requirements dictates that the repository must comply with regulatory stipulations that performance assessment calculations include the effects of resource exploitation on probable releases. Scenarios for these releases incorporate inadvertent penetration of the repository by an exploratory drilling operation. This paper presents the scenarios and models used to predict releases from the repository to the biosphere during. an inadvertent intrusion into the waste disposal regions. A summary of model results and conclusions is also presented.
In the last ten years, since the break-up of the Soviet Union, remarkable progress in arms control and disarmament has occurred. The Nuclear Non-Proliferation Treaty (NPT), the completion of the Comprehensive Test Ban Treaty (CTBT), and the Chemical Weapons Treaty (CWC) are indicative of the great strides made in the non- proliferation arena. Simultaneously, the Intermediate Nuclear Forces Treaty (INF), the Conventional Forces Treaty in Europe (CFE), and the Strategic Arms Reduction Treaties (START), all associated with US-Soviet Union (now Russia) relations have assisted in redefining European relations and the security landscape. Finally, it now appears that progress is in the offing in developing enhanced compliance measures for the Biological and Toxin Weapons Convention (BTWC). In sum, all of these achievements have set the stage for the next round of arms control activities, which may lead to a much broader, and perhaps more diffused multilateral agenda. In this new and somewhat unpredictable international setting, arms control and disarmament issues will require solutions that are both more creative and innovative than heretofore.
We report the results of recent experiments on thermally degraded HMX and HMX/binder materials. Small-scale samples were heated confined in either constant-volume or load- controlled configurations. A main emphasis of the work reported here is developing an understanding of the complex coupling of the mechanical and chemical responses during thermal degradation.
The Simdarion Infranet (S1) is a term which is being used to dcscribc one element of a multidisciplinary distributed and distance computing initiative known as DisCom2 at Sandia National Laboratory (http ct al. 1998). The Simulation Intranet is an architecture for satisfying Sandia's long term goal of providing an end- to-end set of scrviccs for high fidelity full physics simu- lations in a high performance, distributed, and distance computing environment. The Intranet Architecture group was formed to apply current distributed object technologies to this problcm. For the hardware architec- tures and software models involved with the current simulation process, a CORBA-based architecture is best suited to meet Sandia's needs. This paper presents the initial desi-a and implementation of this Intranct based on a three-tier Network Computing Architecture(NCA). The major parts of the architecture include: the Web Cli- ent, the Business Objects, and Data Persistence.
A parametric study of etch rates and surface morphologies of In-containing compound semiconductors (InP, InGaAs, InGaAsP, InAs and AlInAs) obtained by BClj-based Inductively Coupled Plasmas is reported. Etch rates in the range 1,500-3,000 &min. are obtained for all the materials at moderate source powers (500 W), with the rates being a strong function of discharge composition, rf chuck power and pressure. Typical root-mean-square surface roughness of-5 nm were obtained for InP, which is worse than the values obtained for Ga-based materials under the same conditions (-1 run). The near surface of etched samples is typically slightly deficient in the group V element, but the depth of this deficiency is small (a few tens of angstroms).
This paper presents experimental data and an computational model of the cold spray solid particle impact process. Copper particles impacting onto a polished stainless steel substrate are examined. The high velocity impact causes significant plastic deformation of both the particle and the sub- strate, but no melting is observed. The plastic deformation exposes clean surfaces that, under the high impact pressures, result in significant bond strengths between the particle and substrate. Experimental measurements of the splat and crater sizes compare well with the numerical calculations. It is shown that the crater depth is significant and increases with impact velocity. However, the splat diameter is much less sensitive to the impact velocity. It is also shown that the geometric lengths of the splat and crater scale linearly with the diameter of the impacting particle. It is hoped that the results presented will allow better understanding of the bonding process during cold spray.
A parametric study of the etch characteristics of GaN, AIN and InN has been earned out with IC1/Ar and IBr/Ar chemistries in an Inductively Coupled Plasma discharge. The etch rates of InN and AIN were relatively independent of plasma composition, while GaN showed increased etch rates with interhalogen concentration. Etch rates for all materials increased with increasing rf chuck power, indicating that higher ion bombardment energies are more efficient in enhancing sputter resorption of etch products. The etch rates increased for source powers up to 500 W and remained relatively thereafter for all materials, while GaN and InN showed maximum etch rates with increasing pressure. The etched GaN showed extremely smooth surfaces, which were somewhat better with IBr/Ar than with IC1/Ar. Maximum selectivities of- 14 for InN over GaN and >25 for InN over AIN were obtained with both chemistries.
A new method for measuring the spin of the electrically charged ground state excitations m the Q$j~j quantum Hall effect ia proposed and demonstmted for the tirst time in GaAs/AIGaAs nndtiquantum wells. The method is &sed on the nuclear spin orientation dependence of" the 2D dc conductivity y in the quantum Hall regime due to the nuclear hyperfine interaction. As a demonstration of this method the spin of the electrically charged excitations of the ground state is determined at filling factor v = 1.
For well resolved electrokinetic separation, we L tilize crystalline quartz to micromachine a uniformly packe Q&iKLmnel. Packing features are posts 5 Vm on a side with:} pm spacing and etched 42 Vm deep. In addition to anisotropic wet etch characteristics for micromachining, quartz propmties are compatible with chemical soiutioits, ekctrokinetic high voltage operation, and stationary phase film depositions. To seal these channels, we employ a room temperature silicon-oxynhride deposition to forma membrane, that is subsequently coated for mechanical stability. Using this technique, particulate issues and global warp, that make large area wafer bon ding methods difficult, are avoided, and a room temperature process, in contrast to high temperature bonding techniques, accommodate preprocessing of metal films for electrical interconnect. After sealing channels, a number of macro-assembly steps are required to attach a micro-optical detection system and fluid interconnects. Keywords: microcharmel, integrated channel, micromachined channel, packed channel, electrokinetic channel, eleetrophoretic channel
We are currently evaluating large capacity (20 - 40 Ah) Bluestar (cylindrical) and Yardney (prismatic) Li-ion cells for their electrical and electrochemical performance characteristics at different temperatures. The cell resistance was nearly constant from room temperature to -20{degrees}C but increased by over 10 times at -40{degrees}C. The specific energy and power as well as the energy density and power density are high and didn't reach a plateau even at the highest discharge rates tested. For example, the prismatic Li-ion cells gave close to 280 Wh l{sup -1} at 4-amp discharge and 249 Wh l{sup -1} at 20-amp discharge at room temperature. For the same current range the specific power values are 102 Wh kg{sup -1} and 91 Wh kg{sup -1}. Cycle life and other electrical and electrochemical properties of the cells will be presented.
This process combines the best features of bulk and surface micromachining. It enables the production of stress free, thick, virtually arbitrarily shaped structures with well defined, thick or thin sacrificial layers, high sacrificial layer selectivity and large undercuts using IC compatible, processes. The basis of this approach is the use of readily available {111} oriented substrates, anisotropic Si trench etching, SiN masking and KOH etching.
The nature of this work was to develop the physics and chemistry base for understanding molecular-scale lubricants used to reduce of friction- and adhesion-induced failure in silicon micromachines (MEMS). We acquired this new knowledge by tailoring the molecular properties of the lubricants, applying local probes that can directly monitor the response of lubricants in contact conditions, and evaluating the performance of model lubricants MEMS devices. Model lubricants under investigation were the silane coupling agents that form monolayer films on native oxide silicon surfaces, which is the substrate in MEMS. These molecules bind via strong surface bonds and produce a layer of hydro- or fluoro-carbon chains normal to the substrate. "Tailoring" the lubricants entails modifying the chain length, the chain chemical reactivity (H or F), and the density of chain structures. Thus much effort went into understanding the surface chemistry of silane-silicon oxide coupling. With proximal probes such as atomic force microscopy (AFM), interracial force microscopy (FM), and shear force microscopy in combination with IFM, we examined the frictional and adhesive properties of the silane films with very high spatial resolution (< 100 nm) and sensitivity. MEMS structures are treated with silanes under identical conditions, and examined for friction and adhesion under operating conditions. Proper assessment of the lubricants required quantitative analysis of MEMS performance at high speeds and long operating times. Our proximal probe measurements and WS performance analyses form a very important link for future molecular dynamics simulations, that, in turn, should be able to predict MEMS performance under all conditions.
A new epoxy foam encapsulant, EF-ARIO/20, has been developed at Sandia National Laboratories (SNL) as a replacement for Ablefoam", an epoxy foam encapsulant used in the W76 Arming, Fusing, and Firing (Al%@) system. Since it contained toxic ingredients including a known carcinogen, Ablefoarn" is no longer commercially available. It has been demonstrated by scanning electron microscopy (SEM) that the microstructure of the new epoxy foam is similar to that of Ablefoam@. Mechanical properties of tensile and compressive strength, and tensile and compressive modulus, and thermal properties of glass transition temperature (.TJ, and coefficient of thermal expansion (CTE) have been measured for the new foam. Electrical properties of dielectric constant, dissipation factors, volume resistivity, and dielectric strength were also measured. These property measurements are comparable to those of Ablefoam@. Development and characterization of the new foam will be discusse~ and a comparison of mechanical, thermal, and electrical properties for the new epoxy foam and Ablefoam@ will be reported.
This report examines methods of mobile communications with an emphasis on mobile computing and wireless communications. Many of the advances in communications involve the use of Internet Protocol (IP), Asynchronous Transfer Mode (ATM), and ad hoc network protocols. However, many of the advances in these protocols have been focused on wired communications. Recently much focus has been directed at advancing communication technology in the area of mobile wireless networks. This report discusses various protocols used in mobile communications and proposes a number of extensions to existing protocols. A detailed discussion is also included on desirable protocol characteristics and evaluation criteria. In addition, the report includes a discussion on several network simulation tools that maybe used to evaluate network protocols.
The proposed "catalytic membrane sensor" (CMS) was developed to generate a device which would selectively identify a specific reagent in a complex mixture of gases. This was to be accomplished by modifying an existing Hz sensor with a series of thin films. Through selectively sieving the desired component from a complex mixture and identifying it by decomposing it into Hz (and other by-products), a Hz sensor could then be used to detect the presence of the select component. The proposed "sandwich-type" modifications involved the deposition of a catalyst layered between two size selective sol-gel layers on a Pd/Ni resistive Hz sensor. The role of the catalyst was to convert organic materials to Hz and organic by-products. The role of the membraneo was to impart both chemical specificity by molecukir sieving of the analyte and converted product streams, as well as controlling access to the underlying Pd/Ni sensor. Ultimately, an array of these CMS elements encompassing different catalysts and membranes were to be developed which would enable improved selectivity and specificity from a compiex mixture of organic gases via pattern recognition methodologies. We have successfully generated a CMS device by a series of spin-coat deposited methods; however, it was determined that the high temperature required to activate the catalyst, destroys the sensor.
Proceedings of the International Thermal Spray Conference
Vardelle, M.; Vardelle, A.; Dussoubs, B.; Fauchais, P.; Roemer, T.S.; Neiser, R.A.; Smith, M.F.
The conditions of particle injection into the side of plasma jets play an important role in determining the microstructure and properties of sprayed deposits. However, few investigations have been carried out on this topic. The current work presents the results of an experimental and computational study of the influence of injector geometry and gas mass flow rate on particle dynamics at injector exit and in the plasma jet. Two injector geometries were tested : a straight tube and a curved tube with various radii of curvature. Zirconia powders with different particle size range and morphology were used. A possible size segregation effect in the injector was analyzed from the space distribution of particles collected on a stick tape. The spray pattern in the plasma jet was monitored from the thermal radiation emitted by particles. An analysis of the particle behavior in the injector and mixing of the carrier-gas flow with the plasma jet was carried out using a 3-D computational fluids dynamics code.
The authors have produced milliwatts of blue light from a diode-pumped, multiple-quantum-well semiconductor laser. This compact source has a pump-to-blue optical efficiency >1%.
This paper describes a modeling technique for single-agent reactive systems, that is influenced by the modeling paradigm of Parnas as well as by the synchronous paradigms of LUSTRE and ESTEREL. In this paradigm, single-agent reactive systems are modeled in a universe having a discrete clock. This discretization of time greatly reduces the temporal complexity of the model. He believes that the advantage of this reduction in temporal complexity is that the resulting model is in many ways better suited to automated software construction and analysis techniques (e.g., deductive synthesis, transformation, and verification) than models that are based on continuous representations of time.
King, B.H.; Morissette, S.L.; Denham, H.; Cesarano III, J.; Dimos, D.
Rheology and deposition behavior of four commercially available thick-film inks and an aqueous alumina slurry were investigated using two different slurry-based deposition systems. The first of these deposition systems, a Micropen, is a commercially available system designed for the deposition of electronic thick film circuits. The second system, referred to as a Robocaster, is a developmental system designed to build thick or structural parts. Slurry rheology was seen to have a minor effect on deposition behavior and the bead shape when deposited using the Micropen. The deposition behavior was instead dominated by drying rate; too rapid of a drying rate led to excessive clogging of the tip. Slurry rheology had a greater impact on the shape of beads deposited using the Robocaster. Highly viscous slurries yielded initially well-defined beads, whereas beads deposited using fluid slurries spread quickly. In both cases, significant spreading occurred with time. These observations only held for slurries with slow drying rates. It was observed that very fluid slurries produced well-defined beads when the drying rate was suitably high.
All US space missions involving on board nuclear material must be approved by the Office of the President. To be approved the mission and the hardware systems must undergo evaluations of the associated nuclear health and safety risk. One part of these evaluations is the characterization of the source terms, i.e., the estimate of the amount, physical form, and location of nuclear material, which might be released into the environment in the event of credible accidents. This paper presents a brief overview of the source term analysis by the Interagency Nuclear Safety Review Panel for the NASA Cassini Space Mission launched in October 1997. Included is a description of the Energy Interaction Model, an innovative approach to the analysis of potential releases from high velocity impacts resulting from launch aborts and reentries.
The literature of radiation damage measurements on cadmium zinc telluride (CZT), cadmium telluride (CT), and mercuric iodide (HgI{sub 2}) is reviewed and in the case of CZT supplemented by new alpha particle data. CZT strip detectors exposed to intermediate energy (1.3 MeV) proton fluences exhibit increased interstrip leakage after 10{sup 10} p/cm{sup 2} and significant bulk leakage after 10{sup 12} p/cm{sup 2}. CZT exposed to 200 MeV protons shows a two-fold loss in energy resolution after a fluence of 5 {times} 10{sup 9} p/cm{sup 2} in thick (3 mm) planar devices but little effect in 2 mm devices. No energy resolution effects were noted from moderated fission spectrum of neutrons after fluences up to 10{sup 10} n/cm{sup 2}, although activation was evident. Exposures of CZT to 5 MeV alpha particle at fluences up to 1.5 {times} 10{sup 10} {alpha}/cm{sup 2} produced a near linear decrease in peak position with fluence and increases in FWHM beginning at about 7.5 {times} 10{sup 9} {alpha}/cm{sup 2}. CT detectors show resolution losses after fluences of 3 {times} 10{sup 9} p/cm{sup 2} at 33 MeV for chlorine-doped detectors. Indium doped material may be more resistant. Neutron exposures (8 MeV) caused resolution losses after fluences of 2 {times} 10{sup 10} n/cm{sup 2}. Mercuric iodide has been studied with intermediate energy protons (10 to 33 MeV) at fluences up to 10{sup 12} p/cm{sup 2} and with 1.5 GeV protons at fluences up to 1.2 {times} 10{sup 8} p/cm{sup 2}. Neutron exposures at 8 MeV have been reported at fluences up to 10{sup 15} n/cm{sup 2}. No radiation damage was reported under these irradiation conditions.
The efficient characterization of nonlinear systems is an important goal of vibration and model testing. The authors build a nonlinear system model based on the acceleration time series response of a single input, multiple output system. A series of local linear models are used as a template to train artificial neutral networks (ANNs). The trained ANNs map measured time series responses into states of a nonlinear system. Another NN propagates response states in time, and a third ANN inverts the original map, transforming states into acceleration predictions in the measurement domain. The technique is illustrated using a nonlinear oscillator, in which quadratic and cubic stiffness terms play a major part in the system`s response. Reasonable maps are obtained for the states, and accurate, long-term response predictions are made for data outside the training data set.
Using both wet and plasma etching, we have fabricated micro-channels in silicon substrates suitable for use as gas chromatography (GC) columns. Micro-channel dimensions range from 10 to 80 μm wide, 200 to 400 μm deep, and 10 cm to 100 cm long. Micro-channels 100 cm long take up as little as 1 cm2 on the substrate when fabricated with a high aspect ratio silicon etch (HARSE) process. Channels are sealed by anodically bonding Pyrex lids to the Si substrates. We have studied micro-channel flow characteristics to establish model parameters for system optimization. We have also coated these micro-channels with stationary phases and demonstrated GC separations. We believe separation performance can be improved by increasing stationary phase coating uniformity through micro-channel surface treatment prior to stationary phase deposition. To this end, we have developed microfabrication techniques to etch through silicon wafers using the HARSE process. Etching completely through the Si substrate facilitates the treatment and characterization of the micro-channel sidewalls, which dominate the GC physico-chemical interaction. With this approach, we separately treat the Pyrex lid surfaces that form the top and bottom surfaces of the GC flow channel.
The conflicting demands for finer features and increased production rates in integrated circuit manufacturing have emphasized the need for improved wafer positioning technology. In this paper we present operational test results from a magnetically levitated platen with structurally integrated piezoelectric actuators. The strain based actuators provide active damping of the platen's flexible body modes, enabling increased bandwidth on the mag-lev positioning system. Test results reveal a dramatic reduction in steady state positioning error and settling time through implementation of active vibration control.
Record-high impact speeds achieved using the Sandia Hyper Velocity Launcher have permitted a systematic study of shock-induced full vaporization of zinc. Pressures up to 5.5 Mbar and temperatures as high as 39000 K (∼3.4 eV) are induced in a thin zinc plate by impacting it with a tantalum flier at speeds up to 10.1 km/s. Such high pressures produce essentially full vaporization of the zinc because the thermodynamic release isentropes pass into the vapor dome near the critical point. To characterize vapor flow, the velocity history produced by stagnation of the zinc expansion products against a witness plate is measured with velocity interferometry. For each experiment, the time-resolved experimental interferometer record is compared with wave-code calculations using an analytical equation of state, called ANEOS, that is known to have performed quite well at lower impact speeds (less than -7 km/s) where vaporization is negligible. Significant discrepancies between experiment and calculation are shown to exist under conditions of the more recent higher impact speeds in excess of 7 km/s where the release isentrope appears to pass near the critical point.
Mixed Metal Phospho-Sulfates were prepared and evaluated for use as acid catalysts via 2-methyl-2-pentene isomerization and o-xylene isomerization. Particular members of this class of materials exhibit greater levels of activity than sulfated zirconia as well as lower rates and magnitudes of deactivation. 31P MAS NMR has been used to examine the role of phosphorous in contributing to the activity and deactivation behavior of these materials, while powder X-ray diffraction, BET surface area, IR, and elemental analysis were used to characterize the bulk catalysts.
The oxidative dehydrogenation (ODH) reactions for the formation of two important organic feedstocks ethylene and propylene are of great interest because of the potential in capital and energy savings associated with these reactions. Theoretically, ODH can achieve high conversions of the starting materials (ethane and propane) at lower temperatures than conventional dehydrogenation reactions. The important focus in our study of ODH catalysts is the development of a structure-property relationship for catalyst with respect to selectivity, so as to avoid the more thermodynamically favorable combustion reaction. Catalysts for the ODH reaction generally consist of mixed metal oxides. Since for the most selective catalyst lattice oxygen is known to participate in the reaction, catalysts are sought with surface oxygen atoms that are labile enough to perform dehydrogenation, but not so plentiful or weakly bound as to promote complete combustion. Also, catalysts must be able to replenish surface oxygen by transport from the bulk. Perovskite materials are candidates to fulfill these requirements. We are studying BaCeO3 perovskites doped with elements such as Ca, Mg, and Sr. During the ODH of the alkanes at high temperatures, the perovskite structure is not retained and a mixture of carbonates and oxides is formed, as revealed by XRD. While the Ca doped materials showed enhanced total combustion activity below 600°C, they only showed enhanced alkene production at 700°C. Bulk structural and surface changes, as monitored by powder X-ray diffraction, and X-ray photoelectron spectroscopy are being correlated with activity in order to understand the factors affecting catalyst performance, and to modify catalyst formulations to improve conversion and selectivity.
Understanding the parameters that affect the performance of milliscale and microscale actuators is essential to the development of optimized designs and fabrication processes, as well as the qualification of devices for commercial applications. This paper discusses the development of optical techniques for motion measurements of LIGA fabricated milliengines. LIGA processing permits the fabrication of precision millimeter-sized machine elements that cannot be fabricated by conventional miniature machining techniques because of their small feature sizes. In addition, tolerances of 1 part in 103 to 104 may be maintained in millimeter sized components with this processing technique. Optical techniques offer a convenient means for measuring long term statistical performance data and transient responses needed to optimize designs and manufacturing techniques. Optical techniques can also be used to provide feedback signals needed for control and sensing of the state of the machine. Optical probe concepts and experimental data obtained using a milliengine developed at Sandia National Laboratories are presented.
This paper describes SONOS nonvolatile memory development at Sandia National Laboratories. A 256K EEPROM nonvolatile memory and a 2K nonvolatile shadow RAM are under development using an n-channel SONOS memory technology. The technology has 1.2 μm minimum features in a twin well design using shallow trench isolation.
In this paper we report investigations of semiconductor laser microcavities for use in detecting changes of human blood cells during lysing. By studying the spectra before and during mixing of blood fluids with de-ionized water, we are able to quantify the cell shape and concentration of hemoglobin in real time during the dynamical process of lysing. We find that the spectra can detect subtle changes that are orders of magnitude smaller than can be observed by standard optical microscopy. Such sensitivity in observing cell structural changes has implications for measuring cell fragility, monitoring apoptotic events in real time, development of photosensitizers for photodynamic therapy, and in-vitro cell micromanipulation techniques.
As part of the FAA's National Aging Aircraft Research Program to foster new technologies for civil aircraft maintenance and repair, use of bonded composite doublers on metal aircraft structures has been advanced. Research and validation of such doubler applications on U.S. certified commercial aircraft has begun. A specific composite application to assess the capabilities of composite doublers was chosen on a L-1011 aircraft for reinforcement of the corner of a cargo door frame where a boron-epoxy repair patch of up to 72 plies was installed. A primary inspection requirement for these doublers is the identification of disbonds between the composite laminate and the aluminum parent material. This paper describes the development of an ultrasonic pulse-echo technique using a modified immersion focus transducer where a robust signal amplitude signature of the composite/aluminum interface is obtained to characterize the condition of the bond. Example waveforms and C-scan images are shown to illustrate the ultrasonic response for various transducer configurations using a boron-epoxy/aluminum skin calibration test sample where disbonds and delaminations were built-in. The modified focus transducer is compatible with portable ultrasonic scanning systems that utilize the weeper or dripless bubbler technologies when an ultrasonic inspection of the boron-epoxy composite doublers installed on aircraft is implemented.
Mid-infrared (3-6 μm) LED's are being developed for use in chemical sensor systems. As-rich, InAsSb heterostructures are particularly suited for optical emitters in the mid-infrared region. We are investigating both InAsSb-InAs multiple quantum well (MQW) and InAsSb-InAsP strained layer superlattice (SLS) structures for use as the active region for light emitting diodes (LED's). The addition of phosphorus to the InAs barriers increases the light and heavy hole splitting and hence reduces non-radiative Auger recombination and provides for better electron and hole confinement in the InAsSb quantum well. Low temperature (<20 K) photoluminescence (PL) emission from MQW structures is observed between 3.2 to 6.0 μm for InAsSb wells between 70 to 100 Å and antimony mole fractions between 0.04 to 0.18. Room temperature PL has been observed to 6.4 μm in MQW structures. The additional confinement by InAsP barriers results in low temperature PL being observed over a narrower range (3.2 to 5.0 μm) for the similar well thicknesses with antimony mole fractions between 0.10 to 0.24. Room temperature photoluminescence was observed to 5.8 μm in SLS structures. The addition of a p-AlAsSb layer between the n-type active region (MQW or SLS) and a p-GaAsSb contact layer improves electron confinement of the active region and increases output power by a factor of 4. Simple LED emitters have been fabricated which exhibit an average power at room temperature of >100 μW at 4.0 μm for SLS active regions. These LED's have been used to detect CO2 concentrations down to 24 ppm in a first generation, non-cryogenic sensor system. We will report on the development of novel LED device designs that are expected to lead to further improvements in output power.
In parameter estimation considerable insight is provided by examining sensitivity coefficients. This paper focuses on the use of sensitivity coefficients in connection with estimating thermal properties in the heat conduction equation. A general methodology for computing sensitivity coefficients can be an important design tool. The use of such a tool is demonstrated in this paper. A control volume, finite element program is used, and briefly described, to implement numerical sensitivity coefficient calculations. In this approach general problems can be studied. Several example problems are presented to demonstrate the insight gained from sensitivity coefficients. The problems are selected from experimental studies to characterize the thermal properties of carbon-carbon composite. Sensitivity coefficients show that in an experiment that is not well designed, additional materials in the experimental configuration can have a larger impact on the temperature than the material of interest. Two-dimensional configurations demonstrate that there can be isolated areas of insensitivity and the difficulty of estimating multiple parameters.
Sandia National Laboratories has developed a unique type of portable low-cost range imaging optical radar (laser radar or LADAR). This innovative sensor is comprised of an active floodlight scene illuminator and an image intensified CCD camera receiver. It is a solid-state device (no moving parts) that offers significant size, performance, reliability, and simplicity advantages over other types of 3-D imaging sensors. This unique flash LADAR is based on low cost, commercially available hardware, and is well suited for many government and commercial uses. This paper presents an update of Sandia's development of the Scannerless Range Imager technology and applications, and discusses the progress that has been made in evolving the sensor into a compact, low, cost, high-resolution, video rate Laser Dynamic Range Imager.
We recently reported on the development of a 5-level polysilicon surface micromachine fabrication process consisting of four levels of mechanical poly plus an electrical interconnect layer and its application to complex mechanical systems. This paper describes the application of this technology to create micro-optical systems-on-a-chip. These are demonstration systems, which show that five levels of polysilicon provide greater performance, reliability, and significantly increased functionality. This new technology makes it possible to realize levels of system complexity that have so far only existed on paper, while simultaneously adding to the robustness of many of the individual subassemblies.
The EPA Environmental Technology Verification (ETV) Site Characterization Pilot is a joint effort between EPA and DOE with the objective of accelerating the acceptance of technologies that reduce the cost and increase the speed of environmental clean-up and monitoring. To date, several technology verifications have already been completed. Typical results from completed field demonstrations are presented to illustrate the verification process and the importance of the program in providing objective information to aid potential users in making informed choices regarding the efficacy of these technologies for their specific characterization and monitoring problems.
Vertical-cavity surface-emitting lasers (VCSELs) are uniquely suited to miniaturized free-space optical systems in which surface-mounting and hybrid assembly techniques can be used to combine different technologies together. Two examples are described of such microsystems that are being developed for sensing applications. The first example is a optical position sensing system for rotating parts. Progress on fabricating similar systems by flip-chip bonding techniques is then discussed. The second example is a chemical sensing/analysis system which uses a miniature fluorescence detection module that is based on surface-mounted VCSELs and diffractive optical elements. The detection module is integrated with a capillary electrochromatography separation system and uses substrate-mode light propagation to focus the VCSEL beam on the capillary channel.
Issues related to the MOCVD growth of AlGaN, specifically the gas-phase parasitic reactions among TMG, TMA, and NH3, are studied using an in-situ optical reflectometer. It is observed that the presence of the well-known gas phase adduct (TMA: NH3) could seriously hinder the incorporation behavior of TMGa. Relatively low reactor pressures (30-50 Torr) are employed to grow an AlGaN/GaN SCH QW p-n diode structure. The UV emission at 360 nm (FWHM ∼ 10 nm) represents the first report of LED operation from an indium-free GaN QW diode.
The Gleeble is an oft-used tool for welding metallurgy research. Besides producing synthetic weld specimens, it is used to determine phase transformation temperatures and kinetics via dilatometry. Experimental data and an FEM model are used to examine measured dilatation errors because of non-uniform heating of the dilatometer and other sources such as sample elastic and plastic deformation. Both isothermal and constant heating/cooling rate scenarios are considered. Further errors which may be introduced when the dilatation is incorrectly assumed to be linearly related to the volume fraction transformed are also discussed.
We report observations of contrasting surface modification behavior of the Au(111) surface in the presence of an electric field and field-emission currents using interfacial force microscopy (IFM) and scanning tunneling microscopy (STM). Our experiments consist of surface modification procedures which allow for large tip-sample gaps, in contrast to fast voltage pulses (applied at tunneling distances) employed by previous STM investigations. Dramatic surface distortions are observed when a 200 nm-radius tip, biased at -100 V, is brought toward the Au surface at a field emission current level of 400 nA and then retracted. In other experiments, we raise the sample voltage to field-emission levels while maintaining a constant current. STM images, measured in a time-resolved manner after each such procedure, show that the presence of a higher electric field (approximately 0.07 V/angstrom) results in step retraction and the disappearance of small islands on the Au(111) surface followed by the formation of vacancy islands in the area directly beneath the apex of the tip where the field is highest. We discuss the implications of these contrasting surface modifications in terms of the various key parameters and in relation to previous studies using voltage pulses in the STM.
The Telemetry Technology Development Department at Sandia National Laboratories actively develops and tests acceleration recorders for penetrating weapons. This new acceleration recorder (MinPen) utilizes a microprocessor-based architecture for operational flexibility while maintaining electronics and packaging techniques developed over years of penetrator testing. MinPen has been demonstrated to function in shock environments up to 20,000 Gs. The MinPen instrumentation development has resulted in a rugged, versatile, miniature acceleration recorder and is a valuable tool for penetrator testing in a wide range of applications.
The monolithic integration of coupled resonators within a vertical cavity laser opens up new possibilities due to the unique ability to tailor the interaction between the cavities. We report the first electrically injected coupled resonator vertical-cavity laser diode and demonstrate novel characteristics arising from the cavity coupling, including methods for external modulation of the laser. A coupled mode theory is used model the output modulation of the coupled resonator vertical cavity laser.
On-heating transformation kinetics were investigated for several steels by using a Gleeble capable of programmable power input as well as programmable temperature cycling. Transformation kinetics determined in both modes are reported. The temperature cycles are significantly different between the two modes due to the latent heat associated with the phase transformations. Both diffusion rates and transformation driving force increase with temperature above the eutectoid temperature, therefore the latent heat can potentially have a significant impact on the transformation kinetics. Experiments with plain carbon steels illustrate that the latent heat of austenite formation causes an appreciable temperature arrest during transformation, and the dilatation response is similarly altered. A kinetic transformation model, based on the decomposition of pearlite and the diffusional growth of austenite, reproduced the transient dilatation data obtained from both control modes reasonably well using the same kinetic parameter values.
Semiconductor processing tools that use a plasma to etch polysilicon or oxides produce residue polymers that build up on the exposed surfaces of the processing chamber. These residues are generally stressed and with time can cause flaking onto wafers resulting in yield loss. Currently, residue buildup is not monitored, and chambers are cleaned at regular intervals resulting in excess downtime for the tool. In addition, knowledge of the residue buildup rate and index of refraction is useful in determining the state of health of the chamber process. We have developed a novel optical fiber-based robust sensor that allows measurements of the residue polymer buildup while not affecting the plasma process.
Mechanisms that control the response of MOS and bipolar devices to ionizing radiation in the natural space environment are briefly reviewed. Standard tests based on room-temperature irradiation and elevated temperature annealing are described for MOS devices to bound the effects of oxide and interface-trap charge in space. For bipolar devices that exhibit enhanced low-dose-rate sensitivity, a standard test equivalent to that developed for MOS devices is not available. However, screening techniques based on room temperature and/or elevated temperature irradiations are described which can minimize the risk to spacecraft and satellite electronics from this phenomenon.
I have recently become involved in the ABET certification process under the new system - ABET 2000. This system relies heavily on concepts of Total Quality Management (TQM). It encourages each institution to define its objectives in terms of its own mission and then create a coherent program based on it. The prescribed steps in setting up the new system at an engineering institution are: o identification of constituencies G definition of mission. It is expected that the department's mission will be consistent with that of the overall institution, but containing some higher resolution language appropriate to that particular discipline of the engineering profession. o statement of objectives consistent with the mission 3G~~\vED " enumeration of desired, and preferably measurable, outcomes of the process that would ~ `=. verify satisfaction of the objectives. ~~~ 07 !398 o establish performance standards for each outcome. o creation of appropriate feedback loops to assure that the objectives are still consistent with Q$YT1 the mission, that the outcomes remain consistent with the objectives, and that the curriculum and the teaching result in those outcomes. It is my assertion that once the institution verbalizes a mission, enumerated objectives naturally flow from that mission. (We shall try to demonstrate by example.) Further, if the mission uses the word "engineer", one would expect that word also to appear in at least one of the objectives. The objective of producing engineers of any sort must -by decree - involve the presence of the ABET criteria in the outcomes list. In other words, successful satisfaction of the ABET items a-k are a necessary subset of the measure of success in producing engineers. o We shall produce bachelor level engineers whose training in the core topics of chemical (or electrical, or mechanical) engineering is recognized to be among the best in the nation. o We shall provide an opportunity for our students to gain a significant exposure to biomedical topics and the integration of those topics with chemical (electrical or mechanical) engineering. o We shall provide unique opportunities for our students to work with clinicians and researchers in hospitals and other medical institutions. combined criteria a-k of ABET and 1-6 of AICHE (or IEEE or ASME) in some sensible manner. Here I have just estimated the number of distinct criteria that would be extracted from the AICHE paragraphs. These criteria are necessarily included because of the objective to producing chemical (electrical or mechanical) engineers. every student who desires an internship or independent study at a medical institution will be placed. a majority of our students will take either the FE exam or the M-CAT exam. demonstrating a commitment to professionalism and to life-long learning. a majority of our students will go on to graduate school or other post-graduate school. (I do not assert that this sort of outcome is appropriate to all excellent schools. In the case of this hypothetical school though, this outcome might be a reasonable expectation.) medical schools will rank our school as among the best from which to admit
We investigate the reliability If a rechargeable battery acting as the energy storage component in a photovoltaic power supply system. A model system was constructed for this that includes the solar resource, the photovoltaic power supp Iy system, the rechargeable battery and a load. The solar resource and the system load are modeled as SI ochastic processes. The photovoltaic system and the rechargeable battery are modeled deterministically, imd an artificial neural network is incorporated into the model of the rechargeable battery to simulate dartage that occurs during deep discharge cycles. The equations governing system behavior are solved simultaneously in the Monte Carlo framework and a fwst passage problem is solved to assess system reliability.
Silicon processing techniques were used to fabricate 3-D photonic lattices with band gaps in the infrared. The demonstration vehicle was a selective infrared mirror/band pass filter, a wide range of other applications are also possible.
The design, growth by metal-organic chemical vapor deposition, and processing of an In{sub 0.07}Ga{sub 0.93}As{sub 0.98}N{sub 0.02} solar Al, with 1.0 ev bandgap, lattice matched to GaAs is described. The hole diffusion length in annealed, n-type InGaAsN is 0.6-0.8 pm, and solar cell internal quantum efficiencies > 70% arc obwined. Optical studies indicate that defects or impurities, from InGAsN doping and nitrogen incorporation, limit solar cell performance.
We have used the Interracial Force Microscope" to perform nanoindentations on Au single- crystal surfaces. We have observed two distinct regimes of plastic deformation which are distinguished by the magnitude of discontinuities in load relaxation. At lower stresses, relaxation occurs in small deviations from elastic behavior, while at the higher stresses they take the form of large load drops often resulting in complete relaxation of the applied load. These major events create a relatively wide plastic zone that subsequently deepens more rapidly than it widens. We discuss these findings in terms of contrasting models of dislocation processes in the two regimes.
By accurately measuring the angle of reflection of a laser beam incident on a reflective surface with a position sensitive detector, changes in the surface normal direction (slope of the surface) can be determined directly. An instrument has been built that makes repeated measurements over the surface, and uses this data to produce a grayscale image of the slope. The resolution of this system to changes in the surface normal direction is found to be better than 0.01 degrees. By focusing the Iaser beam to achieve a lateral resolution of 5 pm, the resolvable surface height change due to a variation in slope is estimated to be <1 nm.
First-principles density-functional calculations are used to study metal adsorption (Li, K, Y, Nb, Ru, Pd, Pt, Cu, Ag, Au, and Al at 1/3-4 monolayer coverages) atop 5 ~ A1203 films on Al(Ill). The oxide-metal bond is ionic at Iow coverages but, with interesting exceptions, caused by polari@i ,~-cE!vED at high coverages where the overlayer is metallic. Binding trends are explained in terms of s'imp e concepts. Increasing overlayer thickness can cause the adsorbate-oxide interface structure to than . %lEc o ~ 1998 and while some metals wet, most do not.
We developed a model for the probabilistic behavior of a rechargeable battery acting as the energy storage component in a photovoltaic power supply system. Stochastic and deterministic models are created to simulate the behavior of the system component;. The components are the solar resource, the photovoltaic power supply system, the rechargeable battery, and a load. Artificial neural networks are incorporated into the model of the rechargeable battery to simulate damage that occurs during deep discharge cycles. The equations governing system behavior are combined into one set and solved simultaneously in the Monte Carlo framework to evaluate the probabilistic character of measures of battery behavior.
A mathematical model of a spirally wound lithium/thionyl chloride primary battery has been developed ~d used for parameter estimation and design studies. The model formulation is based on the fimdarnental Consemation laws using porous electrode theory and concentrated solution theory. The model is used to estimate the difision coefficient and the kinetic parameters for the reactions at the anode and the cathode as a function of temperature. These parameters are obtained by fitting the simulated capacity and average cell voltage to experimental data over a wide range of temperatures (-55 to 49"C) and discharge loads (10 to 250 ohms). The experiments were performed on D-sized, cathode-limited, spirally wound lithium/thionyl chloride cells. The model is also used to study the effkct of cathode thickness on the cell capacity as a finction of temperature, and it was found that the optimum thickness for the cathode- limited design is temperature and load dependent.
A discrete element computer program named DMC_BLAST (Distinct Motion Code) has been under development since 1987 for modeling rock blasting (Preece & Taylor, 1989). This program employs explicit time integration and uses spherical or cylindrical elements that are represented as circles in two dimensions. DMC_BLAST calculations compare favorably with data from actual bench blasts (Preece et al, 1993). Coal seam chilling refers to the shattering of a significant portion of the coal leaving unusable fines. It is also refereed to as coal damage. Chilling is caused during a blast by a combination of explosive shock energy and movement of the adjacent rock. Chilling can be minimized by leaving a buffer zone between the bottom of the blastholes and the coal seam or by changing the blast design to decrease the powder factor or by a combination of both. Blast design in coal mine cast blasting is usually a compromise between coal damage and rock fragmentation and movement (heave). In this paper the damage to coal seams from rock movement is examined using the discrete element computer code DMC_BLAST. A rock material strength option has been incorporated into DMC_BLAST by placing bonds/links between the spherical particles used to model the rock. These bonds tie the particles together but can be broken when the tensile, compressive or shear stress in the bond exceeds the defined strength. This capability has been applied to predict coal seam damage, particularly at the toe of a cast blast where drag forces exerted by movement of the overlying rock can adversely effect the top of the coal at the bench face. A simulation of coal mine cast blasting has been performed with special attention being paid to the strength of the coal and its behavior at t he bench face during movement of the overlying material.
Sol-gel matrices are promising host materials for potential chemical and biosensor applications. Previous studies have focused on modified sol-gel routes using alkoxides for encapsulation of enzymes. However the formation of alcohol as a byproduct during hydrolysis and condensation reactions poses limitations. We report the immobilization of glucose oxidase and peroxidase in silica prepared by an aqueous route which may provide a more favorable environment for the biomolecules. A two step aqueous sol-gel procedure using sodium silicate as the precursor was developed to encapsulate the enzymes and the dye precursor, o-dianisidine. Glucose oxidase catalyzes the oxidation of glucose to give gluconic acid and hydrogen peroxide. Peroxidase then catalyzes the reaction of the dye precursor with hydrogen peroxide to produce a colored product. The kinetics of the coupled enzymatic reactions were monitored by optical spectroscopy and compared to those occurring in tetramethyl orthosilicate (TMOS) derived silica matrices developed by Yamanaka. Enhanced kinetics in the aqueous silicate matrices were related to differences in the host microstructure as elucidated by microstructural comparisons of the corresponding aerogels.
The rapid pace of change at Ike end of the 20th Century should continue unabated well into the 21st Century. The driver will be the marketplace imperative of "faster, better, cheaper." This imperative has already stimulated a revolution-in-engineering in design and manufacturing. In contrast, to date, reliability engineering has not undergone a similar level of change. It is critical that we implement a corresponding revolution-in-reliability-engineering as we enter the new millennium. If we are still using 20th Century reliability approaches in the 21st Century, then reliability issues will be the limiting factor in faster, better, and cheaper. At the heart of this reliability revolution will be a science-based approach to reliability engineering. Science-based reliability will enable building-in reliability, application-specific products, virtual qualification, and predictive maintenance. The purpose of this paper is to stimulate a dialogue on the future of reliability engineering. We will try to gaze into the crystal ball and predict some key issues that will drive reliability programs in the new millennium. In the 21st Century, we will demand more of our reliability programs. We will need the ability to make accurate reliability predictions that will enable optimizing cost, performance and time-to-market to meet the needs of every market segment. We will require that all of these new capabilities be in place prior to the stint of a product development cycle. The management of reliability programs will be driven by quantifiable metrics of value added to the organization business objectives.
High density plasma etching of GaAs, GaSb and AIGaAs was performed in IC1/Ar and lBr/Ar chemistries using an Inductively Coupled Plasma (ICP) source. GaSb and AlGaAs showed maxima in their etch rates for both plasma chemistries as a function of interhalogen percentage, while GaAs showed increased etch rates with plasma composition in both chemistries. Etch rates of all materials increased substantially with increasing rf chuck power, but rapidly decreased with chamber pressure. Selectivities > 10 for GaAs and GaSb over AlGaAs were obtained in both chemistries. The etched surfaces of GaAs showed smooth morphology, which were somewhat better with IC1/Ar than with IBr/& discharge. Auger Electron Spectroscopy analysis revealed equi-rate of removal of group III and V components or the corresponding etch products, maintaining the stoichiometry of the etched surface.
A parametric study of Inductively Coupled Plasma etching of InP, InSb, InGaP and InGaAs has been carried out in IC1/Ar and IBr/Ar chemistries. Etch rates in excess of 3.1 prrdmin for InP, 3.6 prnh-nin for InSb, 2.3 pm/min for InGaP and 2.2 ~rrdmin for InGaAs were obtained in IBr/Ar plasmas. The ICP etching of In-based materials showed a general tendency: the etch rates increased substantially with increasing the ICP source power and rf chuck power in both chemistries, while they decreased with increasing chamber pressure. The IBr/Ar chemistry typically showed higher etch rates than IC1/Ar, but the etched surface mophologies were fairly poor for both chemistries.
Reactive ion beam etching (RD3E) of GaAs, GaP, AIGaAs and GaSb was performed in a Cl2-Ar mixture using an Inductively Coupled Plasma (ICP) source. `The etch rates and yields were strongly affected by ion energy and substrate temperature. The RJBE was dominated by ion-assisted etching at <600 eV and by physical sputtering beyond 600 eV. The temperature dependence of the etch rates revealed three different regimes, depending on the substrate temperature: 1) sputtering-etch limited, 2) products-resorption limited, and 3) mass-transfer limited regions. GaSb showed the overall highest etch rates, while GaAs and AIGaAs were etched at the same rates. The etched features showed extremely smooth morphologies with anisotropic sidewalls.
Understanding the surface heat transfer during quenching can be beneficial. Analysis to estimate the surface heat transfer from internal temperature measurements is referred to as the inverse heat conduction problem (IHCP). Function specification and gradient adjoint methods, which use a gradient search method coupled with an adjoint operator, are widely u led methods to solve the IHCP. In this paper the two methods are presented for the multidimensional case. The focus is not a rigorous comparison of numerical results. Instead after formulating the multidimensional solutions, issues associated with the numerical implementation and practical application of the methods are discussed. In addition, an experiment that measured the surface heat flux and temperatures for a transient experimental case is analyzed. Transient temperatures are used to estimate the surface heat flux, which is compared to the measured values. The estimated surface fluxes are comparable for the two methods.
This paper describes a general methodological framework for evaluating the perceptual properties of auditory stimuli. The framework provides analysis techniques that can ensure the effective use of sound for a variety of applications including virtual reality and data sonification systems. Specifically, we discuss data collection techniques for the perceptual qualities of single auditory stimuli including identification tasks, context-based ratings, and attribute ratings. In addition, we present methods for comparing auditory stimuli, such as discrimination tasks, similarity ratings, and sorting tasks. Finally, we discuss statistical techniques that focus on the perceptual relations among stimuli, such as Multidimensional Scaling (MDS) and Pathfinder Analysis. These methods are presented as a starting point for an organized and systematic approach for non-experts in perceptual experimental methods, rather than as a complete manual for performing the statistical techniques and data collection methods. It is our hope that this paper will help foster further interdisciplinary collaboration among perceptual researchers, designers, engineers, and others in the development of effective auditory displays.
Probabilistic uncertainty is a phenomenon that occurs to a certain degree in many engineering!~ applications. The effects that the uncertainty has upon a given system response is a matter of some concern. Techniques which provide insight to these effects will be required as modeling and prediction become a more vital tool in the engineering design process. As might be expected, this is a difficult proposition and the focus of many research efforts. The purpose of this paper is to outline a procedure to evaluate uncertainty in dynamic system response exploiting Gauss-Hermite numerical quadrature. Specifically numerical integration techniques are utilized in conjunction with the Advanced Mean Value method to efficiently and accurately estimate moments of the response process. A numerical example illustrating the use of this analytical tool in a practical framework is presented.
Copper powder was sprayed by the cold-gas dynamic method. In-flight particle velocities were measured with a laser-two-focus system as a function of process parameters such as gas temperature, gas pressure, and powder feed rate. Particle velocities were uniform in a relatively large volume within the plume and agreed with theoretical predictions. The presence of the substrate was found to have no significant effect on particle velocities. Cold-spray deposition efficiencies were measured on aluminum substrates as a function of particle velocity and incident angle of the plume. Deposition efficiencies of up to 95% were achieved. The critical velocity for deposition was determined to be about 640 meters per second. This work investigates both the in-flight characteristics of copper particles in a supersonic cold-spray plume and the build-up of the subsequent coating on aluminum substrates. Velocities were found to be relatively constant within a large volume of the plume. Particle counts dropped off sharply away from the central axis. The presence of a substrate was found to have no effect on the velocity of the particles. A substantial mass-loading effect on the particle velocity was observed; particle velocities begin to drop as the mass ratio of powder to gas flow rates exceeds 3%. The measured variation of velocity with gas pressure and pre-heat temperature was in fairly good agreement with theoretical predictions. Helium may be used as the driving gas instead of air in order to achieve higher particle velocities for a given temperature and pressure. Coating deposition efficiencies were found to increase with particle velocity and decrease with gun- substrate angle. There did not appear to be any dependence of the deposition efficiency on coating thickness. A critical velocity for deposition of about 640 mk appears to fit the data well. The cold-spray technique shows promise as a method for the deposition of materials which are thermally sensitive or may experience rapid oxidation under typical thermal spray conditions. High deposition efficiencies are achievable for certain coating-substrate conditions. Work remains to determine the material and microstructural properties which govern the coating process.
The etch rate of GaN under W-assisted photoelectrochemical conditions in KOH solutions is found to be a strong function of illumination intensity, solution molarity, sample bias and material doping level. At low e-h pair generation rates, grain boundaries are selectively etched, while at higher illumination intensities etch rates for unintentionally doped (n - 3x 10^12Gcm-3) GaN are 2 1000 .min-l. The etching is diffusion limited under our conditions with an activation energy of - 0.8kCal.mol-1. The etched surfaces are rough, but retain their stoichiometry. PEC etching is found to selectively reveal grain boundaries in GaN under low light illumination conditions. At high lamp powers the rates increase with sample temperature and the application of bias to the PEC cell, while they go through a maximum with KOH solution molarity. The etching is diffusion-limited, producing rough surface morphologies that are suitable in a limited number of device fabrication steps. The surfaces however appear to remain relatively close to their stoichiometric composition.
Particle-in-cell simulations of applied-B ion diodes using the QUICKSILVER code have been augmented with Monte Carlo calculations of electron-anode interactions (reflection and energy deposition). Extraction diode simulations demonstrate a link between the instability evolution and increased electron loss and anode heating. Simulations of radial and extraction ion diodes show spatial non-uniformity in the predicted electron loss profile leading to hot spots on the anode that rapidly exceed the 350-450 {degree}C range, known to be sufficient for plasma formation on electron-bombarded surfaces. Thermal resorption calculations indicate complete resorption of contaminants with 15-20 kcal/mole binding energies in high-dose regions of the anode during the power pulse. Comparisons of parasitic ion emission simulations and experiment show agreement in some aspects; but also highlight the need for better ion source, plasma, and neutral gas models.
Amorphous carbon films have been grown by evaporation of graphite with concurrent Ar+ ions bombardment assistance. The ion energy has been varied between 0-800 V while keeping a constant ion to carbon atom arrival ratio. Film composition and density were determined by ion scattering techniques (RBS and ERDA), indicating a negligible hydrogen content and a density dependence with the assistance voltage. The bonding structure of the films has been studied by Raman and X-ray Absorption Near-Edge (XANES) spectroscopy. Different qualitative effects have been found depending on the ion energy range. For ion energies below 300 eV, there is a densification of the carbon layer due to the increase in the sp3 content. For ion energies above 300 eV sputtering phenomena dominate over densification, and thinner films are found with increasing assistance voltage until no film is grown over 600 V. The films with the highest SP3 content are grown with intermediate energies between 200-300 V.
A method is presented for connecting dissimilar finite element meshes in three dimensions. The method combines the concept of master and slave surfaces with the uniform strain approach for surface, corrections finite elements- By modifyhg the are made to element formulations boundaries of elements on the slave such that first-order patch tests are passed. The method can be used to connect meshes which use different element types. In addition, master and slave surfaces can be designated independently of relative mesh resolutions. Example problems in three-dimensional linear elasticity are presented.
Many lessons have been learned over the past 24 years as the Waste Isolation Pilot Plant (WIPP) project has progressed from initial site characterization to final licensing that may be of relevance to other nuclear-waste-disposal projects. These lessons pertain to the manner in which field and laboratory investigations are planned, how experiments are interpreted, how conceptual and numerical models are developed and simplified~ and how defensibility and credibility are achieved and maintained. These lessons include 1) Site characterization and performance assessment (PA) should evolve together through an iterative process, with neither activity completely dominating the other. 2) Defensibility and credibility require a much greater depth of understanding than can be represented in PA models. 3) Experimentalists should be directly involved in model and parameter abstraction and simplification for PA. 4) External expert review should be incorporated at all stages of a project~ not just after an experiment or modeling activity is completed. 5) Key individuals should be retained for the life of a project or a process must be established to transfer their working knowledge to new individuals. 6) An effective QA program needs to be stable and consistent for the duration of a project and rests on best scientific practices. All of these lessons relate to the key point that consideration must be given from the earliest planning stages to maximizing the defensibility and credibility of all work.
Most analytical solutions and computer codes for well-test analysis assume a radial flow geometry around a well even though actual flow geometries can be quite different particularly in fractured media. Accurate estimation of hydraulic parameters requires knowledge of the flow geometry. Flow dimensions, representing the combined effects of flow geometry and variations in hydraulic properties, em be interpreted from the late-time slope of the pressure derivative on a log-log plot. However, the interpreted flow dimensions could be caused by an infinite number of flow geometry and hydraulic property combinations. Identifying the correct flow geometry so that appropriate hydraulic properties can be calculated is a difficult process, requiring additional information from a variety of sources. Defining a "conservative" model for a system with nonradial flow dimensions is problematic at best. Errors are compounded when hydraulic properties interpreted by force-fitting radial model to tests in nonradial systems are used in flow and transport models that also fail to take proper account of flow geometry. Whatever the flow dimension of a system might be, proper test interpretation and careful model construction, calibration, and testing are required to provide accurate modeling of flow and transport in that system.
A principal goal of the shock physics program at Sandia is to establish a capability to make accurate equation of state (EOS) measurements on the Z pulsed radiation source. The Z accelerator is a source of intense x-ray radiation, which can be used to drive ablative shocks for EOS studies. With this source, ablative multi shocks can be produced to study materials over the range of interest to both weapons and ICF physics programs. In developing the capability to diagnose these types of studies on Z, techniques commonly used in conventional impact generated experimental were implemented. The primary diagnostic presently being used for this work is velocity interferometry, VISAR, which not only provides Hugoniot particle velocity measurements, but also measurements of non-shock EOS measurements, such as isentropic compression. In addition to VISAR capability, methods for measuring shock velocity have also been developed for shock studies on Z. When used in conjunction with the Rankine- Hugoniot jump conditions, material response at high temperatures and pressures can be inferred. Radiation in the Z accelerator is produced when approximately 18 MA are passed through a cylindrical wire array typically 20 to 50 mm in diameter and 10 to 20 mm in height. 200-300 wires with initial diameters on the order of 8 to 20 micron form, upon application of the current, a plasma shell, which is magnetically imploded until it collapses and stagnates on axis, forming a dense plasma emitter in the shape of a column, referred to as a" z pinch". The initial wire array and subsequent plasma pinch are confined within a metallic can, referred to as a primary hohlraum, which serves as both a current return path and a reflective surface to contain the radiation. Attached to openings in the primary hohlraum wall are smaller tubes referred to as secondaries. Multiple secondaries can be fielded on most experiments, which are the typical location for mounting EOS samples. In this configuration, the secondary S1 contains two separate VISAR probes for making velocity measurements at different material thicknesses. By correlating the resulting velocity profiles in time, a measurement of shock velocity can be determined. In addition, the velocity profiles provide the Hugoniot particle velocity after the records were impedance-matched. Secondaries S2 and S3 provide measurements of shock velocity using laser light reflected from steps. As the shock arrives at each of these surfaces, the surface reflectivity significantly decreases, which causes a sharp drop in return light. The shock velocity can be inferred from shock arrival at different steps The z-pinch technique is particularly useful for producing high amplitude shock waves for EOS applications. An alternative approach for using Z is to produce shockless loading directly with the magnetic pressure in the accelerator.
The electronic defect density of native, anodic, and synthetic Al oxide layers on Al were studied by solid state electrical measurement as a function of hydration OF the oxide. The non-hydrated synthetic Al oxide layers, which included electron cyclotron resonance (ECR) plasma deposited oxides as well as ECR plasma grown oxides, were highly insulating with electrical transport dominated by thermal emission from deep traps within the oxide. Following hydration these oxides and the native oxides exhibited a large increase in electronic defect density as evidenced by increases in the DC leakage current, reduction in the breakdown field, and increase in AC conductance. Elastic recoil detection of hydrogen revealed that hydration leads to hydrogen incorporation in the oxide films and hydrogen injection through the films into the Al layer below. The increase in electronic defect concentration is related to this hydrogenation and may play a significant role in localized corrosion initiation.
BioSimMER (Bioterrorism Simulated Medical Emergency Response) is a Virtual Reality-based mission rehearsal and training environment. BioSimMER employs contingency-oriented, multiple-path algorithms and MOESINIOPS focused on real-world operations. BioSimMER is network-based and immerses multiple trainees in a high resolution synthetic environment, including virtual casualties and instruments that they may interact with and manipulate. Trainees are represented as individuals by virtual human Avatars. The simulation consists of several components: virtual casualties dynamically manifest the symptoms of their injuries and respond to the intervention of the trainees. Agent transport analysis is used to simulate casualty exposures and to drive the responses of simulated sensors/detectors. The selected prototype scenario is representative of combined injuries anticipated in BW operations.
Recent beam bending (BB) experiments of microporous t31rns with very small pores have shown that the fluid confined in these pores exhibits monotonic compressive stresses as the relative pressure is varied from vacuum to saturation (relative vapor pressure, p/p. = 1). The variation of the stress near saturation is found to be linear in hz(p) and given by the saturated liquid density to within 20%. Capillary condensed fluids are traditionally described by the Laplace-Kelvin (LK) theory. LK theory correctly predicts the slope of the stress near saturation to be pl, but also predicts that the stress should be zero at saturation and tensile between saturation aud the capillary transition pressure. Hence LK theory does not capture the monotonic compressive stress observed in BB experiments. This report describes the results of density functional theory calculations for a simple fluid continued to a slit pore network. We show how the presence of even a small amount of polydispersity in pore size leads to both a monotonic compressive stress as well as the observed LK slope.
Many types of self-assembly can be found in nature. They include crystallization, the formation of micelles, and the folding of proteins. Recently there has been much interest in pursuing nano-to-microscopically engineered materials by way of self-assembly on imprinted or templated surfaces. In all of these diverse cases, wetting plays a critical role in the assembly process. Wetting involves the interactions of the substrate or amphiphilic molecule or macromolecule with a solvent. In many self-assembled systems we find that the critical feature of the system is a substrate! or macromolecule with a both hydrophilic and hydrophobic nature. In this paper we discuss the wetting properties of a striped surface where the stripes represent alternating chemical characteristics. We show how the chemical heterogeneity affects the wetting properties of the surface (e.g. the static contact angle), and discuss the length limitations on the soft lithography approach. In this paper, the wetting of a chemically heterogeneous surface is studied using a nonlocal Density Functional Theory (DFT). The results for the heterogeneous surface model we discuss have immediate implications for soft-lithography by self-assembly. It also lends fundamental insight into the mechanisms controlling self-assembly of macromolecules. We present the results of nonlocal 2D DFT calculations on the wetting properties of chemically heterogeneous surfaces. These calculations showed complex density distributions and phase behavior as a result of the heterogeneity. The location of the wetting transition are found to be strongly dependent on the extent and strength of the heterogeneity, and complete wetting was suppressed altogether if the hydrophobic parts of the surface were large enough. In these cases, the condensed nanophase may crystallize if the hydrophilic surface-fluid interactions are strong enough. By exploring the phase space including strength of hydrophilic interactions and extent of chemical heterogeneity, an operational phase diagram was established that could be used for designing nanoscopically tailored devices and materials.
Nanometer-scale compositional structure in InAsxP1.InNYAsxPl.x-Y/InP, grown by gas-source molecular-beam epitaxy and in InAsl-xPJkAsl$b#InAs heterostructures heterostructures grown by metal-organic chemical vapor deposition has been characterized using cross-sectional scanning tunneling microscopy. InAsxP1-x alloy layers are found to contain As-rich and P-rich clusters with boundaries formed preferentially within (T 11) and (111) crystal planes. Similar compositional structure is observed within InNYAsxP1-x-Y alloy layers. Imaging of InAsl-xp@Asl#bY superlattices reveals nanometer-scale clustering within both the hAsI-.p and InAsl$bY alloy layers, with preferential alignment of compositional features in the direction. Instances are observed of compositional structure correlated across a heterojunction interface, with regions whose composition corresponds to a smaller unstrained lattice, constant relative to the surrounding alloy material appearing to propagate across the interface.
Piezoelectric effects on the optical properties of GaN/AlGaN multiple quantum wells (MQWS) have been investigated by picosecond time-resolved photoluminescence (PL) measurements. For MQWS with well thickness 30 and 40 the excitonic transition peak positions at 10 K in continuous wave (CW) spectra are red-shifted with respect to the GaN epilayer by 17 meV and 57 meV, respectively. The time-resolved PL spectra of the 30 and 40 well MQWS reveal that the excitonic transition is in fact blue-shifted at early delay times due to quantum confinement of carriers. The spectral peak position shifts toward lower energies as the delay time increases and becomes red-shifted at longer delay times. We have demonstrated that the results described above is due to the presence of the piezoelectric field in the GaN wells of GaN/AlGaN MQWS subject to elastic strain together with screening of the photoexcited carriers. By comparing experimental and calculation results, we conclude that the piezoelectric field strength in GaN/Al.15G~.85N MQWS has a lower limit value of about 560 kV/cm: The electron and hole wave function distributions have also been obtained. The implication of our findings on the practical applications of GaN based optoelectronic devices is also discussed.
Epitaxial growth of AlAs-InAs short-period superlattices on (001) InP can lead to heterostructures exhibiting strong, quasi-periodic, lateral modulation of the alloy composition; transverse satellites arise in reciprocal space as a signature of the compositional modulation. Using an x-ray diffractometer equipped with a position-sensitive x-ray detector, we demonstrate reciprocal-space mapping of these satellites as an efficient, nondestructive means for detecting and characterizing the occurrence of compositional modulation. Systematic variations in the compositional modulation due to the structural design and the growth conditions of the short-period superlattice are characterized by routine mapping of the lateral satellites. Spontaneous compositional modulation occurs along the growth front during molecular-beam epitaxy of (AlAs) (InAs)n short-period superlattices. The modulation is quasi-periodic and forms a lateral superlattice superimposed on the intended SPS structure. Corresponding transverse satellites arise about each reciprocal lattice point, and x-ray diffraction can be routinely used to map their local reciprocal-space structure. The integrated intensity, spacing, orientation, and shape of these satellites provide a reliable means for nondestructively detecting and characterizing the compositional modulation in short-period superlattices. The analytical efficiency afforded by the use of a PSD has enabled detailed study of systematic vacations in compositional modulation as a function of the average composition, the period, and the growth rate of the short- period superlattice
A variety of different plasma chemistries, including SF6, Cl2, IC1 and IBr, have been examined for dry etching of 6H-SiC in high ion density plasma tools (Inductively Coupled Plasma and Electron Cyclotron Resonance). Rates up to 4,500~"min-1 were obtained for SF6 plasmas, while much lower rates (S800~.min-') were achieved with Cl2, ICl and IBr. The F2- based chemistries have poor selectivity for SiC over photoresist masks (typically 0.4-0.5), but Ni masks are more robust, and allow etch depths 210pm in the SiC. A micromachining process (sequential etch/deposition (<2,000Angstrom min-1) for SiC steps) designed for Si produces relatively low etch rates.
A systematic study of the etch characteristics of GaN, AlN and InN has been performed with boron halides- (BI{sub 3} and BBr{sub 3}) and interhalogen- (ICl and IBr) based Inductively Coupled Plasmas. Maximum etch selectivities of -100:1 were achieved for InN over both GaN and AlN in the BI{sub 3} mixtures due to the relatively high volatility of the InN etch products and the lower bond strength of InN. Maximum selectivies of- 14 for InN over GaN and >25 for InN over AlN were obtained with ICl and IBr chemistries. The etched surface morphologies of GaN in these four mixtures are similar or better than those of the control sample.
Free-standing aligned carbon nanotubes have previously been grown above 7000C on mesoporous silica embedded with iron nanoparticles. Here, carbon nanotubes aligned over areas up to several square centimeters were grown on nickel-coated glass below 666oC by plasma-enhanced hot filament chemical vapor deposition. Acetylene (C2H2) gas was used as the carbon source and ammonia (NH3) gas was used as a catalyst and dilution gas. Nanotubes with controllable diameters from 20 to 400 nanometers and lengths from 0.1 to 50 micrometers were obtained. Using this method, large panels of aligned carbon nanotubes can be made under conditions that are suitable for device fabrication.
In a collaborative program between the United States Nuclear Regulatory Commission (USNRC) and the Nuclear Power Engineering Corporation (NUPEC) of Japan under sponsorship of the Ministry of International Trade and Ihdustry, the seismic behavior of Prestressed Concrete Containment Vessels (PCCV) is being investigated. A 1:10 scale PCCV model has been constructed by NUPEC and subjected to seismic simulation tests using the high performance shaking table at the Tadotsu Engineering Laboratory. A primary objective of the testing program is to demonstrate the capability of the PCCV to withstand design basis earthquakes with a significant safety margin against major damage or failure. As part of the collaborative program, Sandia National Laboratories (SNL) is conducting research in state-of-the-art analytical methods for predicting the seismic behavior of PCCV structures, with the eventual goal of understanding, validating, and improving calculations dated to containment structure performance under design and severe seismic events. With the increased emphasis on risk-informed- regulatory focus, more accurate ch&@erization (less uncertainty) of containment structural and functional integri~ is desirable. This paper presents results of post-test calculations conducted at ANATECH to simulate the design level scale model tests.
Surviving in a data-rich environment means understanding the difference between data and information. This paper reviews an environmental case study that illustrates that understanding and shows its importance. In this study, a decision problem was stated in terms of au economic-objective fimction. The function contains a term that defines the stochastic relationship between the decision and the information obtained during field chamctetition for an environmental contaminant. Data is defied as samples drawn or experimental realizations of a mudom fimction. Information is defined as the quantitative change in the value of the objective fiction as a result of the sample.
Wind energy researchers at Sandia National Laboratories have developed a small, lightweight, time- synchronized, robust data acquisition system to acquire long-term time-series data on a wind turbine rotor. A commercial data acquisition module is utilized to acquire data simultaneously from multip!e strain-gauge, analog, and digital channels. Acquisition of rotor data at precisely the same times as acquisition of ground data is ensured by slaving the acquisition clocks on the rotor- based data unit and ground-based units to the Global Positioning Satellite (GPS) system with commercial GPS receiver units and custom-built and programmed programmable logic devices. The acquisition clocks will remain synchronized within two microseconds indefinitely. Field tests have confirmed that synchronization can be maintained at rotation rates in excess of 350 rpm, Commercial spread-spectrum radio modems are used to transfer the rotor data to a ground- based computer concurrently with data acquisition, permitting continuous acquisition of data over a period of several hours, days or even weeks.
Rapid detection of excursions in the concentration of organic contaminants in water that is being recycled is crucial to the more widespread acceptance of rinse water recycling as a method of reducing water usage in semiconductor manufacturing. In 1995 SEMATECH'SS116 PTAB (Project Technical Advisory Board) arbitrarily targeted a response time of 30s as the goal for the on-line detection of TOC (Total Oxidizable Carbon) in water - a goal thought to simpliilj the design of water recycling systems (less volume required for water storage in the recycle loop) and lead to more widespread adoption of recycling of spent rinse waters by the US semiconductor industry. A subsequent evaluation of the TOC analyzers commercially available in early 1996 demonstrated that the fastest response times were on the order of three minutes ljllef. 1]. This paper updates the 1996 evaluation of commercially available TOC analyzers by assessing modified versions of two of the previously evaluated analyzers and also anew analyzer that became commercially available in 1997.
Esperanzaite, ideally NaCazA12(As5+0.i)[As5+03 (OH)] (OH)2FJH20), Z =2, is a new mineral from the Mina h Esperarq Durango State, Mexico. The mineral occurs as blue-green botryoidal crystalline masses on rhyolite, with separate spheres up to 1.5 mm Y Deceased in diameter. Mobs hardness is 4.5, specific gravity 3.240h, and 3.36( 3)C.IC. Optical properties were measured in 589 nm light. Esperanzaite is biaxial (-), .Y= Y = Z= colorless, a 1.580(1), ~ 1.588( 1), and y 1.593(1 ); 2V0hs is 74(1 ~ and 2 }'CUIC is 76.3". Dispersion is medium, r < v, and optic axes are oriented as a A Z = +50.5o, b = Y, c P. X = +35". The five strongest X-ray diffraction maxima in the powder pattern are (~ /, hk~: 2.966,100, 13 i, 31 i, 031 ; 3.527,90, 220; 2.700,90,221,002, 040; 5.364>80, 001, 020; 4.796,80,011. Esperanzaite is monoclinic, u 9.687(5), b 10.7379(6), c 5.5523(7)& ~ 105.32( 1 )", space group P21/nz. The atomic arrangement of esperanzaite was solved by Direct Methods and Fourier analysis (R= 0.03 1). The Fundamental Building Block is formed of stacks of heteropolyhedral tetramers; the tetramers are formed of two arsenate tetrahedral and two Al octahedra, comer-linked in 4-member rings. The Fundamental Building Blocks are linked by irregular lda~j and Ca@ polyhedra.
The role of extended and point defects, and key impurities such as C, O and H, on the electrical and optical properties of GaN is reviewed. Recent progress in the development of high reliability contacts, thermal processing, dry and wet etching techniques, implantation doping and isolation and gate insulator technology is detailed. Finally, the performance of GaN-based electronic and photonic devices such as field effect transistors, UV detectors, laser diodes and light-emitting diodes is covered, along with the influence of process-induced or grown-in defects and impurities on the device physics.
Enhancement of the Zeeman energy of 2D conduction electrons near v = 1 by optical dynamic nuclear polarization (lINP), as observed by the Overhauser shift of the transport detected electron spin resonance, is measured quantitatively for the first time in GaAs/AIGaAs mukiquantum wells. The NMR signal enhancement is obtained under similar conditions in the same sample, allowing the hyperke coupling constant of 3.7T between between the nuclei and 2D conduction electrons to be measured for the first time. The potential to suppress the Zeeman energy by optical DNP is discussed in the context of its potential influence on Skyrmion formation.
Self-aligned GaAs JFET narrowband amplifiers operating at 2.4 GHz were designed and fabricated with both discrete WETS as a hybrid amplifier and as RFICS. Enhancement-mode JFETs were used in order to be compatible with complementary digital logic. Hybrid amplifiers achieved 8-10 dB of gain at 2.4 GHz and 1 mW DC bias level. The RFIC achieved 10 dB of gain at 24 GHz and 2 mW DC bias level.
We report in this paper a study of the effective mass in thin oxide Si-MOSFETs, using the temperature dependence of the Shubnikov-de Haas (SdH) effect and following the methodology developed by Smith and Stiles.
Plasma, vapor and debris associated with an impact or explosive event have been demonstrated in the laboratory to produce radiofrequency and optical electromagnetic emissions that can be diagnostic of the event. Such effects could potentially interfere with communications or remote sensing equipment if an impact occurred, for example, on a satellite. More seriously, impact generated plasma could end the life of a satellite by mechanisms that are not well understood and not normally taken into account in satellite design. For example, arc/discharge phenomena resulting from highly conductive plasma acting as a current path across normally shielded circuits may have contributed to the loss of the Olympus experimental communications satellite on August 11, 1993. The possibility of significant storm activity during the Leonid meteor showers of November 1998, 1999 and 2000 (impact velocity, 72 km/s) has heightened awareness of potential vulnerabilities from hypervelocity electromagnetic effects to orbital assets. The concern is justified. The amount of plasma, electrostatic charge and the magnitude of the resulting currents and electric fields scale nearly as the cube of the impact velocity. Even for microscopic Leonid impacts, the amount of plasma approaches levels that could be dangerous to spacecraft electronics. The degree of charge separation that occurs during hypervelocity impacts scales linearly with impactor mass. The resulting magnetic fields increase linearly with impactor radius and could play a significant role in our understanding of the paleomagnetism of planetary surfaces. The electromagnetic properties of plasma produced by hypervelocity impact have been exploited by researchers as a diagnostic tool, invoked to potentially explain the magnetically jumbled state of the lunar surface and blamed for the loss of the Olympus experimental communications satellite. The production of plasma in and around an impact event can lead to several effects: (1) the plasma provides a significant perturbation to the ambient magnetic field via the electromagnetic pulse; (2) it supports the production of transient radiofrequency electromagnetic fields; (3) it charges ejected debris which, because of inertial separation, leads to significant electrostatic and magnetostatic field production; and (4) its high electrical conductivity provides a convenient path for discharge of the resulting high electrostatic fields. Effects (1) and (2) have been discussed by the authors elsewhere. Effects (3) and (4) will be discussed here. Typical studies of kinetic energy warheads focus on lethality as a function of impactor momentum or energy as they couple mechanically to the target. At high enough energies, however, additional physical processes come into play. Vaporization plays an important role and a partially ionized plasma can form. Impact-generated plasma, charged debris and magnetic fields have been characterized by laboratory hypervelocity impact experiments and are shown to be more abundant when certain easily ionized materials (such as alkali metals) are used in either projectile or target.
The Waste Isolation Pilot Plant (WIPP) is a deep underground nuclear waste repository certified by the U.S. Environmental Protection Agency ,(EPA) to store transuranic defense-related waste contaminated by small amounts of radioactive materials. Located at a depth of about 655 meters below the surface, the facility is sited in southeastern New Mexico, about 40 Department of Energy underground facilities, waste disposal. kilometers east of the city of Carlsbad, New Mexico. The U.S. (DOE) managed the design and construction of the surface and and remains responsible for operation and closure following The managing and operating contractor for the DOE at the WIPP, Westinghouse Electric Corporation, maintains two rechmiant seismic monitoring systems located at the surface and in the underground. This report discusses two earthquakes detected by the seismic monitoring system, one a duratior magnitude 5.0 (Md) event located approximately 60 km east-southeast of the facility, and another a body-wave magnitude 5.6 (rob) event that occurred approximately 260 kilometers to the south-southeast.
As an ongoing part of the collaborative efforts between the Cooperative Monitoring Center (CMC) at Sandia National Laboratories, the United States Arms Control and Disarmament Agency (ACDA), and U.S. Department of Energy (DOE), staff from the CMC served as faculty in conducting a workshop in Shanghai, China. Sponsor of the workshop was the Regional Centre for Strategic Studies (RCSS) based in Colombo, Sri Lanka. The workshop included participants from throughout South Asia and China. The CMC presented four sessions related to the role of monitoring technologies in promoting regional security and building confidence among nations. Participation in these workshops supports U.S. efforts to further regional cooperation and promote arms control, nonproliferation and other cooperative securily measures and supplements efforts funded by DOE and ACDA over the past four years. The RCSS Shanghai meeting permitted a continued CMC involvement in regionally conducted training for anew generation of leaders in government, the military, and academia throughout South Asia and China. Nuclear issues are clearly a dominant South Asian concern since the nuclear tests of May 1998. However, there remains a strong interest in identifying opportunities for increased trade and reduced tensions in other areas. The RCSS and other regional organizations are enthusiastic about continued CMC involvement in future regional courses.
A multi-attribute utility analysis is applied to the decision to select a treatment method for the management of aluminum-based spent nuclear i%el (A1-SNF) owned by the United States Department of Energy (DOE). DOE will receive, treat, and temporarily store Al- SNF, most of which is composed of highly enriched uranium, at its Savannah River Site in South Carolina. DOE intends ultimately to send the treated Al-SNJ? to a geologic repository for permanent disposal. DOE initially considered ten treatment alternatives for the management of A1-SNF, and has narrowed the choice to two of these the direct disposal and melt and dilute alternatives. The decision analysis presented in this document focuses on a decision between these two remaining alternatives.
The HI616 shipping container is a certified type B(U) packaging used by the Department of Energy (DOE) to ship tritium in support of defense programs. During the 1997 recertification of the container, DOE became concerned about the possible cracking of the polyurethane foam in the overpacks of the 2300 containers currently in service. In response, Sandia National Laboratories (SNL) initiated a radiographic inspection program to determine if cracking of the foam was occurring in the H1616 overpacks. SNL developed the radiographic technique for inspecting the foam and contracted the Savannah River Site's Tritium Engineering division to inspect a representative sample of overpacks in service. This report details the development process and the results of all of the radiography performed both at SNL and Savannah River.
As computing assumes a more central role in managing the nuclear stockpile, the consequences of an erroneous computer simulation could be severe. Computational failures are common in other endeavors and have caused project failures, significant economic loss, and loss of life. This report examines the causes of software failure and proposes steps to mitigate them. A formal verification and validation program for scientific software is recommended and described.
The research summarized in this report is the result of a two-year effort that has focused on evaluating the viability of wavelet bases for the solution of partial differential equations. The primary objective for this work has been to establish a foundation for hierarchical/wavelet simulation methods based upon numerical performance, computational efficiency, and the ability to exploit the hierarchical adaptive nature of wavelets. This work has demonstrated that hierarchical bases can be effective for problems with a dominant elliptic character. However, the strict enforcement of orthogonality was found to be less desirable than weaker semi-orthogonality or bi-orthogonality for solving partial differential equations. This conclusion has led to the development of a multi-scale linear finite element based on a hierarchical change of basis. The reproducing kernel particle method has been found to yield extremely accurate phase characteristics for hyperbolic problems while providing a convenient framework for multi-scale analyses.
Early in 1994, the Department of Energy assigned Sandia National Laboratories the responsibility for designing and providing the welding system for the girth weld for the AT-400A containment vessel. (The AT-400A container is employed for the shipment and long-term storage of the nuclear weapon pits being returned from the nation's nuclear arsenal.) Mason Hanger Corporation's Pantex Plant was chosen to be the production facility. The project was successfully completed by providing and implementing a turnkey welding system and qualified welding procedure at the Pantex Plant. The welding system was transferred to Pantex and a pilot lot of 20 AT-400A containers with W48 pits was welded in August 1997. This document is intended to bring together the AT-400A welding system and product (girth weld) requirements and the activities conducted to meet those requirements. This document alone is not a complete compilation of the welding development activities but is meant to be a summary to be used with the applicable references.
The goal is the development of materials that are highly sensitive and selective for chid chemicals and biochemical (such as insecticides, herbicides, proteins, and nerve agents) to be used as sensors, catalysts and separations membranes. Molecular modeling methods are being used to tailor chiral molecular recognition sites with high affinity and selectivity for specified agents. The work focuses on both silicate and non-silicate materials modified with chirally-pure fictional groups for the catalysis or separations of enantiomerically-pure molecules. Surfactant and quaternary amine templating is being used to synthesize porous frameworks, containing mesopores of 30 to 100 angstroms. Computer molecukw modeling methods are being used in the design of these materials, especially in the chid surface- modi~ing agents. Molecular modeling is also being used to predict the catalytic and separations selectivities of the modified mesoporous materials. The ability to design and synthesize tailored asymmetric molecular recognition sites for sensor coatings allows a broader range of chemicals to be sensed with the desired high sensitivity and selectivity. Initial experiments target the selective sensing of small molecule gases and non-toxic model neural compounds. Further efforts will address designing sensors that greatly extend the variety of resolvable chemical species and forming a predictive, model-based method for developing advanced sensors.
Comprehensive management of the battle-space has created new requirements in information management, communication, and interoperability as they effect surveillance and situational awareness. The objective of this proposal is to expand intelligent controls theory to produce a uniquely powerful implementation of distributed ground-based measurement incorporating both local collective behavior, and interoperative global optimization for sensor fusion and mission oversight. By using a layered hierarchal control architecture to orchestrate adaptive reconfiguration of autonomous robotic agents, we can improve overall robustness and functionality in dynamic tactical environments without information bottlenecks. In this concept, each sensor is equipped with a miniaturized optical reflectance modulator which is interactively monitored as a remote transponder using a covert laser communication protocol from a remote mothership or operative. Robot data-sharing at the ground level can be leveraged with global evaluation criteria, including terrain overlays and remote imaging data. Information sharing and distributed intelli- gence opens up a new class of remote-sensing applications in which small single-function autono- mous observers at the local level can collectively optimize and measure large scale ground-level signals. AS the need for coverage and the number of agents grows to improve spatial resolution, cooperative behavior orchestrated by a global situational awareness umbrella will be an essential ingredient to offset increasing bandwidth requirements within the net. A system of the type described in this proposal will be capable of sensitively detecting, tracking, and mapping spatial distributions of measurement signatures which are non-stationary or obscured by clutter and inter- fering obstacles by virtue of adaptive reconfiguration. This methodology could be used, for example, to field an adaptive ground-penetrating radar for detection of underground structures in urban environments and to detect chemical species concentrations in migrating plumes. Given is our research in these areas and a status report of our progress.
This report describes the results of a Sandia Laboratov Directed Research & Development project to develop a technique that can identifi atoms in atomically engineered nanostructures. The report provides a detailed description of the experimental measurement techniques and subsequent image analysis procedures used in the identification process, followed by examples of the technique's successful application to several atomic surface features. Use of this technique requires the experimental measurement of both constant-current topographic and multi-bias conductance data from an atomic surface with the scanning tunneling microscope. These measurements are rendered as a collection of topographic and single-bias conductance images of the surface. Image pixels are then grouped into classes by a computed grouping algorithm, according to the shared conductance characteristics exhibited at each pixel. The image pixels are then color-coded by class to produce a false-color image of the scanned surface that chemically distinguishes surface electronic features over the entire area of the measured atomic surface.
Technical support for the Hanford Tank Closure Program focused on evaluation of concepts for immobilization of residual contaminants in the Hanford AX tanks and underlying soils, and identification of cost-effective approaches to improve long-term performance of AX tank farm cIosure systems. Project objectives are to develop materials or engineered systems that would significantly reduce the radionuclide transport to the groundwater from AX tanks containing residual waste. We pursued several studies that, if implemented, would help achieve these goals. They include: (1) tank fill design to reduce water inilltration and potential interaction with residual waste; (2) development of in-tank getter materials that would specifically sorb or sequester radionuclides; (3) evaluation of grout emplacement under and around the tanks to prevent waste leakage during waste retrieval or to minimize water infiltration beneath the tanks; (4) development of getters that will chemically fix specific radionuclides in soils under tanks; and (5) geochemical and hydrologic modeling of waste-water-soil-grout interactions. These studies differ in scope from the reducing grout tank fill employed at the Savannah River Site in that our strategy improves upon tank fill design by providing redundancy in the barriers to radionuclide migration and by modification the hydrogeochemistry external to the tanks.
Sol-gel chemistry has been the focus of much attention in the design and preparation of highly crosslinked polysiloxane gels. Preparation of sol-gel processed silica or polysilesquioxane gels is carried out by the hydrolysis and condensation of alkoxysilyl monomers, usually in the presence of catalytic acid or base and an excess of water. Removal of the alcohol and water byproducts of the condensation reactions, in addition to the alcohol needed to co-dissolve the hydrophobic monomers with water, leads to substantial shrinkage during drying of the resulting gels. This limits the utility of sol-gel processing for applications requiring net-shape casting of artifacts, crack free coatings, or low vaporous organic contaminants (VOCs). It would be advantageous to have a sol-gel process based on an organosilicon monomer that would not require water as a reactant or produce water and alcohol condensation products and still result in siloxane network polymers capable of forming gels. Here, the authors show the synthesis and preparation of a novel sol-gel monomer which can easily be polymerized by ring opening polymerization to give highly crosslinked polysiloxane gels with no condensation byproducts.
An air sparging and high vacuum extraction was installed as an alternative to a containment pump and treat system to reduce the long-term remediation schedule. The site is located at the DOE Mound facility in Miamisburg, Ohio, just south of Dayton. The air sparging system consists of 23 wells interspersed between 17 soil vapor extraction wells. The SVE system has extracted about 1,500 lbs of VOCs in five months. The air sparging system operated for about 6 weeks before shutdown due to suspected biochemical fouling. Technical data are presented on the operating characteristics of the system.
Advanced radiographic applications require a constant source size less than 1 mm. To study the time history of a relativistic electron beam as it interacts with a bremsstrahlung converter, one of the diagnostics they use is a multi-frame time-resolved hard x-ray camera. They are performing experiments on the ETA-II accelerator at Lawrence Livermore National Laboratory to investigate details of the electron beam/converter interactions. The camera they are using contains 6 time-resolved images, each image is a 5 ns frame. By starting each successive frame 10 ns after the previous frame, they create a 6-frame movie from the hard x-rays produced from the interaction of the 50-ns electron beam pulse.
The authors report 77K operation of an optically pumped vertical cavity surface emitting laser with an Sb-based cavity. The structure consists of 15 and 20 pair AlGaAsSb/AlAsSb top and bottom reflectors and a bulk InGaAs active region.
The authors present an agent-oriented mechanism that uses a central ontology as a means to conduct complex distributed transactions. This is done by instantiating a template object motivated solely by the ontology, then automatically and explicitly linking each temple element to an independently constructed interface component. Validation information is attached directly to the links so that the agent need not know a priori the semantics of data validity, merely how to execute a general validation process to satisfy the conditions given in the link. Ontological leveling is critical: all terms presented to informants must be semantically coherent within the central ontology. To illustrate this approach in an industrial setting, they discuss an existing implementation that conducted international commercial transactions on the World-Wide Web. Agents operating within a federated architecture construct, populate by Web-based elicitation, and manipulate a distributed composite transaction object to effect transport of goods over the US/Mexico border.
ALEGRA is a coupled physics framework originally written to simulate inertial confinement fusion (ICF) experiments being conducted at the PBFA-II facility at Sandia National Laboratories. It has since grown into a large software development project supporting a number of computational programs at Sandia. As the project has grown, so has the development team, from the original two authors to a group of over fifteen programmers crossing several departments. In addition, ALEGRA now runs on a wide variety of platforms, from large PCs to the ASCI Teraflops massively parallel supercomputer. The authors discuss the reasons for ALEGRA`s success, which include the intelligent use of object-oriented techniques and the choice of C++ as the programming language. They argue that the intelligent use of development tools, such as build tools (e.g. make), compiler, debugging environment (e.g. dbx), version control system (e.g. cvs), and bug management software (e.g. ClearDDTS), is nearly as important as the choice of language and paradigm.
The authors improved a self-aligned emitter etchback technique that requires only a single emitter diffusion and no alignments to form self-aligned, patterned-emitter profiles. Standard commercial screen-printed gridlines mask a plasma-etchback of the emitter. A subsequent PECVD-nitride deposition provides good surface and bulk passivation and an antireflection coating. The authors used full-size multicrystalline silicon (mc-Si) cells processed in a commercial production line and performed a statistically designed multiparameter experiment to optimize the use of a hydrogenation treatment to increase performance. They obtained an improvement of almost a full percentage point in cell efficiency when the self-aligned emitter etchback was combined with an optimized 3-step PECVD-nitride surface passivation and hydrogenation treatment. They also investigated the inclusion of a plasma-etching process that results in a low-reflectance, textured surface on multicrystalline silicon cells. Preliminary results indicate reflectance can be significantly reduced without etching away the emitter diffusion.
The Direct Simulation Monte Carlo (DSMC) technique is employed to evaluate several configurations of thermal transpiration and accommodation pumps. There is renewed interest in these rarefied flow pumping concepts for Micro-Electro-Mechanical Systems (MEMS) due to advances in micro-fabrication. The simulation results are compared with existing data to understand gas-surface interaction uncertainties in the experiments. Parametric studies are performed to determine the effects of Knudsen number and surface temperature and roughness on the maximum pump pressure ratio.
This paper describes a method of modeling swarms of UAVs and/or fighter aircraft using particle simulation concepts. Recent investigations into the use of genetic algorithms to design neural networks for the control of autonomous vehicles (i.e., robots) led to the examination of methods of simulating large collections of robots. This paper describes the successful implementation of a model of swarm dynamics using particle simulation concepts. Several examples of the complex behaviors achieved in a target/interceptor scenario are presented.
A novel Monte Carlo (MC) model of Zener pinning has been developed. It differs from previous MC models in that it does not simulate polycrystalline grain growth. Instead a single boundary moving through an array of particles is simulated. The boundary curvature defines the driving force acting on the boundary; this is constant throughout the simulation. By incrementally increasing the volume fraction of particles, the pinning force is gradually increased. The boundary is eventually pinned when driving force equals the pinning force. This defines the Zener criterion and enables the volume fraction dependence of the model to be determined. The value of this approach is that there is no limit imposed on either the volume fraction of particles or their size. Simulations have been carried out over a range of volume fractions, from 0 < f < 0.25 for particles with volumes of 27 sites. The pinning force exerted by particles on a boundary is related to the characteristic shape during bypass, the so called dimple. When the simulation temperature is T{prime} = 0, dimples are not formed, the boundaries experience an artificially strong pinning force and the model exhibits an f{sup {minus}1/2} dependence. When T{prime} is greater than a critical value dimples are formed and the model shows an f{sup {minus}1} volume fraction dependence. The implications of this result for previously MC models of Zener pinning is discussed.
In this paper a new line search for a Newton Rhapson learning control algorithm is presented. Theorems and rigorous proofs of its increased robustness over existing line searches are provided, and numerical examples are used to further validate the theorems. Also, the previously posed open question of whether robust optimal trajectory learning is possible is also addressed. It is shown that the answer is generally no, at least for gradient-based learning control algorithms.
This paper describes the configuration space representation of mechanical function and shows how it supports the design of micro-mechanisms. The domain characteristics of curved geometry, joint play, and custom joints render traditional design tools inappropriate, but configuration spaces can model these characteristics. They represent the quantitative and the qualitative aspects of kinematic function in a concise geometric format that helps designers visualize system function under a range of operating conditions, find and correct design flaws, study joint play, and optimize performance. The approach is demonstrated on a surface micromachined counter meshing gear discrimination device developed at Sandia National Laboratories.
Thermally activated batteries use electrodes that are typically fabricated by cold pressing of powder. In the LiSi/FeS2 system, natural (mineral) pyrite is used for the cathode. In an effort to increase the energy density and specific energy of these batteries, flame and plasma spraying to form thin films of pyrite cathodes were evaluated. The films were deposited on a 304 stainless steel substrate (current collector) and were characterized by scanning electron microscopy and x-ray dlfllaction. The films were electrochemically tested in single cells at 5000C and the petiormance compared to that of standard cells made with cold-pressed powders. The best results were obtained with material deposited by de-arc plasma spraying with a proprietq additive to suppress thermal decomposion of the pyrite.
Battery systems have traditionally relied on extensive build and test procedures for product realization. Analytical models have been developed to diminish this reliance, but have only been partially successful in consistently predicting the performance of battery systems. The complex set of interacting physical and chemical processes within battery systems has made the development of analytical models a significant challenge. Advanced simulation tools are needed to more accurately model battery systems which will reduce the time and cost required for product realization. Sandia has initiated an advanced model-based design strategy to battery systems, beginning with the performance of lithiumhhionyl chloride cells. As an alternative approach, we have begun development of cell performance modeling using non-phenomenological models for battery systems based on artificial neural networks (ANNs). ANNs are inductive models for simulating input/output mappings with certain advantages over phenomenological models, particularly for complex systems. Among these advantages is the ability to avoid making measurements of hard to determine physical parameters or having to understand cell processes sufficiently to write mathematical functions describing their behavior. For example, ANN models are also being studied for simulating complex physical processes within the Li/SOC12 cell, such as the time and temperature dependence of the anode interracial resistance. ANNs have been shown to provide a very robust and computationally efficient simulation tool for predicting voltage and capacity output for Li/SOC12 cells under a variety of operating conditions. The ANN modeling approach should be applicable to a wide variety of battery chemistries, including rechargeable systems.
Grain growth experiments and simulations exhibit self-similar grain size distributions quite different from that derived via a mean field approach by Hillert [ 1]. To test whether this discrepancy is due to insufficient anneal times, two different two-dimensional grain structures with realistic topologies and Hillert grain size distributions are generated and subjected to grain growth via the Monte Carlo Potts Model (MCPM). In both cases, the observed self-similar grain size distributions deviate from the initial Hillert form and conform instead to that observed in MCPM grain growth simulations that start from a random microstructure. This suggests that the Hillert grain size distribution is not an attractor.
Transformations that are based on syntax directed rewriting systems can have a significant impact on the construction of high assurance systems. However, in order for a transformational approach to be useful to a particular problem domain, a (general) transformation system must be adapted to the notation of that particular domain. A transformation system that can be easily adapted to various domain notations has the potential of having a wide range of applicability. In this paper we dissus why transforrmtion is attractive horn a high assurance perspective, as well as some issues surrounding automated transformation within specific problem domains. We then give an overview of a language independent High Assurance Transformation System (HATS) that is being developed at Sandia National Laboratories.
A series of studies is presented in which an electrical-impedance tomography (EXT) system is validated for two-phase flow measurements. The EIT system, developed at Sandia National Laboratories, is described along with the computer algorithm used for reconstructing phase volume fraction profiles. The algorithm is first tested using numerical data and experimental phantom measurements, with good results. The EIT system is then applied to solid-liquid and gas-liquid flows, and results are compared to an established gamma-densitometry tomography (GDT) system. In the solid-liquid flows, the average solid volume fractions measured by EIT are in good agreement with nominal values; in the gas-liquid flows, average gas volume fractions and radial gas volume fraction profiles from GDT and EIT are also in good agreement.
Many of the papers in this volume present detailed descriptions of the chemical analyses and methodologies that have been used to evaluate the maximum dissolved and colloid concentrations of actinides within the WIPP repository as part of the performance assessment. This paper describes the program fcm collecting experimental data and provides an overview of how the PA modeled the release of radionuclides to the accessible environment, and how volubility and colloid parameters were used by the PA models.
The routing and interconnection of optical signals through narrow channels and around sharp corners is important for large-scale all-optical circuit applications. A recent computational result suggests that photonic crystals may offer a novel way of achieving this goal by providing a mechanism for guiding light that is fundamentally different from traditional index guiding. Waveguiding in a photonic crystal, and near 100% transmission of electromagnetic waves around sharp 90o corners were observed experimentally. Bend- ing radii were made smaller than one wavelength.
A overview has been presented on the topic of alternative surface finishes for package I/Os and circuit board features. Aspects of processability and solder joint reliability were described for the following coatings: baseline hot-dipped, plated, and plated-and-fused 100Sn and Sn-Pb coatings; Ni/Au; Pd, Ni/Pd, and Ni/Pd/Au finishes; and the recently marketed immersion Ag coatings. The Ni/Au coatings appear to provide the all-around best option in terms of solderability protection and wire bondability. Nickel/Pal ftishes offer a slightly reduced level of performance in these areas that is most likely due to variable Pd surface conditions. It is necessmy to minimize dissolved Au or Pd contents in the solder material to prevent solder joint embrittlement. Ancillary aspects that included thickness measurement techniques; the importance of finish compatibility with conformal coatings and conductive adhesives; and the need for alternative finishes for the processing of non-Pb bearing solders were discussed.
LOW-180 silicic magmas are reported from only a small number of localities (e.g., Yellowstone and Iceland), yet petrologic evidence points to upper crustal assimilation coupled with fractional crystallization (AFC) during magma genesis for nearly all silicic magmas. The rarity of 10W-l `O magmas in intracontinental caldera settings is remarkable given the evidence of intense 10W-l*O meteoric hydrothermal alteration in the subvolcanic remnants of larger caldera systems. In the Platoro caldera complex, regional ignimbrites (150-1000 km3) have plagioclase 6180 values of 6.8 + 0.1%., whereas the Middle Tuff, a small-volume (est. 50-100 km3) post-caldera collapse pyroclastic sequence, has plagioclase 8]80 values between 5.5 and 6.8%o. On average, the plagioclase phenocrysts from the Middle Tuff are depleted by only 0.3%0 relative to those in the regional tuffs. At Yellowstone, small-volume post-caldera collapse intracaldera rhyolites are up to 5.5%o depleted relative to the regional ignimbrites. Two important differences between the Middle Tuff and the Yellowstone 10W-180 rhyolites elucidate the problem. Middle Tuff magmas reached water saturation and erupted explosively, whereas most of the 10W-l 80 Yellowstone rhyolites erupted effusively as domes or flows, and are nearly devoid of hydrous phenocrysts. Comparing the two eruptive types indicates that assimilation of 10W-180 material, combined with fractional crystallization, drives silicic melts to water oversaturation. Water saturated magmas either erupt explosively or quench as subsurface porphyrins bejiire the magmatic 180 can be dramatically lowered. Partial melting of low- 180 subvolcanic rocks by near-anhydrous magmas at Yellowstone produced small- volume, 10W-180 magmas directly, thereby circumventing the water saturation barrier encountered through normal AFC processes.
Multispectral UV fluorescence measurements were made of an optically dense medium (fetal bovine serum, FBS) spiked with sodium salicylate at concentrate ions from 0.2 to 500 pg/ml . Analysis of the spectra show that, depending on experimental conditions, reasonably good estimates of concentration can be obtained across the entire range of concentrate ions. Experimental conditions required for recovering these estimates are demonstrated.
Many industries transmit large amounts of energy under the control of safety critical systems, inadvertent release of energy by such systems can result in negative high consequences. Thirpaper describes aprincipie-ba.re dstrategyfor preventing inadvertent release due [O normai operational stresses or abnormal (e.g., accident) stresses. The sajetyprin- ciples, deveioped by Sandia )?a~ional Laboratories for im- bedding detonation safety in nuclear weapons, include iso- [atio~ inoperabilip and incompatibility. There principles will be defined in the paper. They are illustrated and con- trasted to conventionalpractice via the application to a gas jiunace control system.
In this paper, we describe a new technique for using a pulsed power source (Z pinch) to produce planar shock waves for high-pressure equation of state (EOS) studies. Initial EOS experiments conducted with techniques indicate that these sources are effective for shock wave studies in samples with diameters of a few millimeters and thicknesses of a fraction of one millimeter, and thus provide the possibility for achieving accuracy in shock and particle velocity measurements of a few percent. We have used the Z pinch source to produce the first in-situ time-resolve particle velocity profiles obtained with pulsed radiation sources in the Mbar regime. Particle velocity profiles obtained with a VISAR interferometer are compared with I-D numerical simulations performed with a radiation-hydrodynamics code, ALEGRA. Good agreement with experimental results was achieved in the simulations and suggests that Z pinch source should be a valuable tool for high-pressure EOS studies in thermodynamic regimes important to hypervelocity impact.
We describe results from three new methods of numerically modeling broad-bandwidth, nanosecond OPO's in the plane-wave approximate ion. They account for differences in group velocities among the three mixing waves, and also include a qutt~ttun noise model.
The development of unconventional active optical sensors to remotely detect and spatially resolve suspected threats obscured by low-visibility observation conditions (adverse weather, clouds, dust, smoke, precipitation, etc.) is fundamental to maintaining tactical supremacy in the battlespace. In this report, the authors describe an innovative frequency-agile image intensifier technology based on time-gated optical parametic amplification (OPA) for enhanced light-based remote sensing through pervasive scattering and/or turbulent environments. Improved dynamic range characteristics derived from the amplified passband of the OPA receiver combined with temporal discrimination in the image capture process will offset radiant power extinction losses, while defeating the deugradative effects & multipath dispersion and ,diffuse backscatter noise along the line-of-sight on resultant image contrast and range resolution. Our approach extends the operational utility of the detection channel in existing laser radar systems by increasing sensitivity to low-level target reffectivities, adding ballistic rejection of scatter and clutter in the range coordinate, and introducing multispectral and polarization discrimination capability in a wavelen~h-tunable, high gain nonlinear optical component with strong potential for source miniaturization. A key advantage of integrating amplification and tlequency up-conversion functions within a phasematched three-wave mixing parametric device is the ability to petiorm background-free imaging with eye-safe or longer inilared illumination wavelengths (idler) less susceptible to scatter without sacrificing quantum efficiency in the detection process at the corresponding signal wavelength. We report benchmark laboratory experiments in which the OPA gating process has been successfidly demonstrated in both transillumination and reflection test geometries with extended pathlengths representative of realistic coastal sea water and cumulus cloud scenarios. In these experiments, undistorted range-gated optica[ images tiom specular and diffuse reflectance targets were acquired through scattering attenuations exceeding ten orders cf magnitude which would be undetectable with traditional optical methods. The broadcast and gating pulses were derived ilom both millijoules 10 Hz picosecond (50-100 ps) and 250 KHz microjoule femtosecond (-150 fs) laser configurations to assess signal-to-noise and spatiaI resolution considerations as a fimction of scattering, integration time, and repetition rate. In addition, the technique was combined with a self-referencing Shack-Hartrnann wavetiont sensor to dia=~ose underlying phase signatures of weak refictive index gradients (OPD-M1 00) or persistent convective wakes (exhaust plumes, bubbles), and to perform adaptive optical compensation in visual fields exhibiting both turbulence and turbidity (OD=4). Comparative system anaiysis results relating image quaiity, optimal gate width, detectable range, and broadcast laser size versus operative atmospheric scattering conditions and search/dwell probability of detection criteria will also be presented.
GaGdO was deposited on GaN for use as a gate dielectric in order to fabricate a depletion metal oxide semiconductor field effect transistor (MOSFET). This is the fmt demonstration of such a device in the III-Nitride system. Analysis of the effect of temperature on the device shows that gate leakage is significantly reduced at elevated temperature relative to a conventional metal semiconductor field effeet transistor (MESFET) fabricated on the same GaN layer. MOSFET device operation in fact improved upon heating to 400 C. Modeling of the effeet of temperature on contact resistance suggests that the improvement is due to a reduction in the parasitic resistances present in the device.
A GaN/AIGaN heterojunction bipolar transistor has been fabricated using C12/Ar dry etching for mesa formation. As the hole concentration increases due to more efficient ionization of the Mg acceptors at elevated temperatures (> 250oC), the device shows improved gain. Future efforts which are briefly summarized. should focus on methods for reducing base resistance.