One reason to use optical fibers to transmit data is for isolation from unintended electrical energy. Using fiber optics in an application where the fiber cable/system penetrates the aperture of a grounded enclosure serves two purposes: first, it allows for control signals to be transmitted where they are required, and second, the insulating properties of the fiber system help to electrically isolate the fiber terminations on the inside of the grounded enclosure. A fundamental question is whether fiber optic cables can allow electrical energy to pass through a grounded enclosure, with a lightning strike representing an extreme but very important case. A DC test bed capable of producing voltages up to 200 kV was used to characterize electrical properties of a variety of fiber optic cable samples. Leakage current in the samples were measured with a micro-Ammeter. In addition to the leakage current measurements, samples were also tested to DC voltage breakdown. After the fiber optic cables samples were tested with DC methods, they were tested under representative lightning conditions at the Sandia Lightning Simulator (SLS). Simulated lightning currents of 30 kA and 200 kA were selected for this test series. This paper documents measurement methods and test results for DC high voltage and simulated lightning tests performed at the Sandia Lightning Simulator on fiber optic cables. The tests performed at the SLS evaluated whether electrical energy can be conducted inside or along the surface of a fiber optic cable into a grounded enclosure under representative lightning conditions.
We report an application of coherent anti-Stokes Raman scattering (CARS) to full-scale fire testing. A CARS instrument has been constructed at the newly commissioned FLAME (Fire Laboratory for Accreditation of Models and Experiments) facility at Sandia, where the CARS system has been used for thermometry in 2-m-diameter, turbulent pool fires. The details of a CARS instrument for probing the challenging pool-fire environment are presented, along with the construction of the unique new FLAME facility itself, which has been designed to accommodate optical and laser-based diagnostics to full-scale fire experimentation. Single-shot CARS spectra and best-fit temperatures from turbulent pool fires are presented, and an estimate of the pdf of the temperature fluctuations from the pool-fire environment is obtained.
Hydrogen getters were tested for use in storage of plutonium-bearing materials in accordance with DOE’s Criteria for Interim Safe Storage of Plutonium Bearing Materials. The original studies, documented in Sandia Report SAND2008-301530150095, included HiTop getter material aged for 3 months at 70°C. This material was aged for an additional 3 months for a total of 6 months at 70°C, and the performance of the getter was evaluated again and documented in Sandia Report SAND2008-301530151789P. This material was then aged for an additional 7 months for a total of 13 months at 70°C, and the performance of the getter under recombination and gettering conditions was evaluated. A sample of the 13 months aged getter was exposed to radiation at SRNL, and the performance of this sample was also evaluated. The results of the 13 months study is reported in SAND2008-301530157165P. The HiTop material was aged for an additional 5 months for a total of 18 months. This material was split into two samples with the second sample being exposed to radiation at SRNL. The performance of the 18 month aged HiTop material is covered in this report.
We describe the design and performance of a high-repetition-rate single-frequency passively Q-switched Yb:YAG microlaser operating near 1030 nm. By using short cavity length, an intracavity Brewster polarizer, and an etalon output coupler, we are able to produce ∼1-ns-long single-frequency pulses at repetition rates up to 19 kHz without shot-to-shot mode hopping. The laser's output spatial mode is TEM00 and its pulse energy varies between 31 μJ and 47 μJ depending on repetition rate. Its peak optical-to-optical efficiency is 22%.
We summarize the performance of mode-filtered, Yb-doped fiber amplifiers seeded by microchip lasers with nanosecond-duration pulses. These systems offer the advantages of compactness, efficiency, high peak power, diffraction-limited beam quality, and widely variable pulse energy and repetition rate. We review the fundamental limits on pulsed fiber amplifiers imposed by nonlinear processes, with a focus on the specific regime of nanosecond pulses. Different design options for the fiber and the seed laser are discussed, including the effects of pulse duration, wavelength, and linewidth. We show an example of a microchip-seeded, single-stage, single-pass fiber amplifier that produced pulses with 1.1 MW peak power, 0.76 mJ pulse energy, smooth temporal and spectral profiles, diffractionlimited beam quality, and linear polarization.
Computer Methods in Applied Mechanics and Engineering
Hills, Richard G.; Dowding, Kevin J.
This paper presents an engineering approach to the thermal challenge problem defined by Dowding et al. (this issue). This approach to model validation is based on a multivariate validation metric that accounts for model parameter uncertainty and correlation between multiple measurement/prediction differences. The effect of model parameter uncertainty is accounted for through first-order sensitivity analysis for the ensemble/validation tests, and first-order sensitivity analysis and Monte-Carlo analysis for the regulatory prediction. While sensitivity based approaches are less computational expensive than Monte-Carlo approaches, they are less likely to capture the far tail behavior of even mildly nonlinear models. The application of the sensitivity based validation metric provided strong evidence that the tested model was not consistent with the experimental data. The use of a temperature dependent effective conductivity with the linear model resulted in model predictions that were consistent with the data. The correlation structure of the model was used to pool the prediction/measurement differences to evaluate the corresponding cumulative density function (CDF). Both the experimental CDF and the predicted CDFs indicated that the regulatory criterion was not met.
Computer Methods in Applied Mechanics and Engineering
Hills, R.G.; Dowding, K.J.; Swiler, L.
This paper summarizes the approaches used to address the thermal validation challenge problem. The approaches differ in their characterization of the thermal properties and uncertainty, the definitions and use of validation metrics, the use of validation experimental data to characterize or improve the model predictions, and the assessment of regulatory compliance. All approaches estimated regulatory failure with the resulting estimated probabilities varying by an order of magnitude.
Recently, the generalized method for calculation of the 16-element Green's function for analysis of surface acoustic waves has proven crucial to develop more sophisticated transducers. The generalized Green's function provides a precise relationship between the acoustic stresses and electric displacement on the three mechanical displacements and electric potential. This generalized method is able to account for mass loading effects which is absent in the effective permittivity approach. However, the calculation is numerically intensive and may lead to numerical instabilities when solving for both the eigenvalues and eigenvectors simultaneously. In this work, the general eigenvalue problem was modified to eliminate the numerical instabilities in the solving procedure. An algorithm is also presented to select the proper eigenvalues rapidly to facilitate analysis for all types of acoustic propagation. The 4 x 4 Green's functions and effective permittivities were calculated for materials supporting Rayleigh, leaky, and leaky longitudinal waves as demonstration of the method.
This report summarizes the results of a case study on the doctrine of a common tester platform, a concept of a standardized platform that can be applicable across the broad spectrum of testing requirements throughout the various stages of a weapons program, as well as across the various weapons programs. The common tester concept strives to define an affordable, next-generation design that will meet testing requirements with the flexibility to grow and expand; supporting the initial development stages of a weapons program through to the final production and surveillance stages. This report discusses a concept investing key leveraging technologies and operational concepts combined with prototype tester-development experiences and practical lessons learned gleaned from past weapons programs.
Hydrogen getters were tested for use in storage of plutonium-bearing materials in accordance with DOE's Criteria for Interim Safe Storage of Plutonium Bearing Materials. The original studies, documented in Sandia Report SAND2007-0095, included HiTop getter material aged for 3 months at 70°C. This material was aged for an additional 3 months for a total of 6 months at 70°C, and the performance of the getter was evaluated again and documented in Sandia Report SAND2007-1789P. This material was then aged for an additional 7 months for a total of 13 months at 70°C, and the performance of the getter under recombination and gettering conditions was evaluated. A sample of the 13 months aged getter was exposed to radiation at SRNL, and the performance of this sample was also evaluated. The results of the 13 months study is reported in SAND2007-7165P. The HiTop material was aged for an additional 5 months for a total of 18 months. This material was split into two samples with the second sample being exposed to radiation at SRNL. The performance of the 18 month aged HiTop material is covered in this report. The 18-month aged material showed similar performance under gettering conditions to the previously aged material: the recombination rate is well above the required rate of 45 std. cc H2/h, and the gettering reaction occurs in the absence of oxygen at a slower rate. Both pressure drop measurements and 1H NMR analyses support these conclusions. 1H NMR analyses show extremely minor changes in the 18-month aged material, which can be possibly attributed to slight decomposition of the HiTop material or absorption of contaminants during the aging process.
Sandia National Laboratories has cradle to grave responsibility for all neutron generators in the US nuclear weapons stockpile. As such, much research effort is exerted to develop a comprehensive understanding of all the major components of a neutron generator. One of the key components is the tritium containing target. The target is a thin metal tritide film. Sandia's research into metal tritides began in the early 1960's with a collaboration with the Denver Research Institute (DRI) and continues to this day with a major in house research effort. This document is an attempt to briefly summarize what is known about the aging of erbium tritide and to review the major publications conducted at Sandia in FY 07. First, a review of our knowledge of helium in erbium tritide will be presented. Second, executive summaries of the six major SAND reports regarding neutron tube targets published in FY07 by Department 2735, the Applied Science and Technology Maturation Department, and research partners are presented.
Adagio is a Lagrangian, three-dimensional, implicit code for the analysis of solids and structures. It uses a multi-level iterative solver, which enables it to solve problems with large deformations, nonlinear material behavior, and contact. It also has a versatile library of continuum and structural elements, and an extensive library of material models. Adagio is written for parallel computing environments, and its solvers allow for scalable solutions of very large problems. Adagio uses the SIERRA Framework, which allows for coupling with other SIERRA mechanics codes. This document describes the functionality and input structure for Adagio.
Presto is a Lagrangian, three-dimensional explicit, transient dynamics code that is used to analyze solids subjected to large, suddenly applied loads. The code is designed for a parallel computing environment and for problems with large deformations, nonlinear material behavior, and contact. Presto also has a versatile element library that incorporates both continuum elements and structural elements. This user's guide describes the input for Presto that gives users access to all the current functionality in the code. The environment in which Presto is built allows it to be coupled with other engineering analysis codes. Using a concept called scope, the input structure reflects the fact that Presto can be used in a coupled environment. The user's guide describes how scope is implemented from the outermost to the innermost scopes. Within a given scope, the descriptions of input commands are grouped based on functionality of the code. For example, all material input command lines are described in a chapter of the user's guide for all the material models that can be used in Presto.
Post-processing and visualization are key components to understanding any simulation. Porting ParaView, a scalable visualization tool, to the Cray XT3 allows our analysts to leverage the same supercomputer they use for simulation to perform post-processing. Visualization tools traditionally rely on a variety of rendering, scripting, and networking resources; the challenge of running ParaView on the Lightweight Kernel is to provide and use the visualization and post-processing features in the absence of many OS resources. We have successfully accomplished this at Sandia National Laboratories and the Pittsburgh Supercomputing Center.
This report describes the results of an inspection performed on the existing stock of SNL Personal Nuclear Accident Dosimeters (PNADs). The current stock is approximately 20 years old, and has not been examined since their initial acceptance. A small random sample of PNADs were opened (a destructive process) and the contents visually examined. Sample contents were not degraded and indicate that the existing stock of SNL PNADs is acceptable for continued use.