Publications

Results 51–75 of 352

Search results

Jump to search filters

Increased preheat energy to MagLIF targets with cryogenic cooling

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Crabtree, Jerry A.; Weis, Matthew R.; Gomez, Matthew R.; Fein, Jeffrey R.; Ampleford, David A.; Awe, Thomas J.; Chandler, Gordon A.; Galloway, B.R.; Hansen, Stephanie B.; Hanson, Jeffrey J.; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Lamppa, Derek C.; Laros, James H.; Mangan, Michael M.; Maurer, A.; Perea, L.; Peterson, Kara J.; Porter, John L.; Rambo, Patrick K.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Daniel E.; Shores, Jonathon S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Yager-Elorriaga, David A.; York, Adam Y.; Paguio, R.R.; Smith, G.E.

Abstract not provided.

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Yager-Elorriaga, David A.; Gomez, Matthew R.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Weis, Matthew R.; Awe, Thomas J.; Chandler, Gordon A.; Myers, Clayton E.; Fein, Jeffrey R.; Geissel, Matthias G.; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Laros, James H.; Robertson, Grafton K.; Savage, Mark E.; Ampleford, David A.; Beckwith, Kristian B.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.

Abstract not provided.

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Yager-Elorriaga, David A.; Gomez, Matthew R.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Knapp, Patrick K.; Schmit, Paul S.; Weis, Matthew R.; Awe, Thomas J.; Chandler, Gordon A.; Mangan, Michael M.; Myers, Clayton E.; Fein, Jeffrey R.; Geissel, Matthias G.; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Webster, Evelyn L.; Rambo, Patrick K.; Robertson, Grafton K.; Savage, Mark E.; Smith, Ian C.; Ampleford, David A.; Beckwith, Kristian B.; Peterson, Kara J.; Porter, John L.; Rochau, G.A.; Sinars, Daniel S.

Abstract not provided.

Direct comparison of wire, foil, and hybrid X-pinches on a 200 kA, 150 ns current driver

Journal of Applied Physics

Collins, G.W.; Valdivia, M.P.; Hansen, Stephanie B.; Conti, F.; Carlson, L.C.; Hammer, D.A.; Elshafiey, A.; Narkis, J.; Beg, F.N.

Wire X-pinches (WXPs) have been studied comprehensively as fast (∼ 1 ns pulse width), small (∼ 1 μm) x-ray sources, created by twisting two or more fine wires into an "X"to produce a localized region of extreme magnetic pressure at the cross-point. Recently, two alternatives to the traditional WXP have arisen: The hybrid X-pinch (HXP), composed of two conical electrodes bridged by a thin wire or capillary, and the laser-cut foil X-pinch (LCXP), cut from a thin foil using a laser. We present a comparison of copper wire, hybrid, and laser-cut foil X-pinches on a single experimental platform: UC San Diego's ∼ 200 kA, 150 ns rise time GenASIS driver. All configurations produced 1-2 ns pulse width, ≤ 5 μm soft x-ray (Cu L-shell, ∼ 1 keV) sources (resolutions diagnostically limited) with comparable fluxes. WXP results varied with linear mass and wire count, but consistently showed separate pinch and electron-beam-driven sources. LCXPs produced the brightest (∼ 1 MW), smallest (≤ 5 μm) Cu K-shell sources, and spectroscopic data showed both H-like Cu K α lines indicative of source temperatures ≥ 2 keV, and cold K α (∼ 8050 eV) characteristic of electron beam generated sources, which were not separately resolved on other diagnostics (within 1-2 ns and ≤ 200 μm). HXPs produced minimal K-shell emission and reliably single, bright, and small L-shell sources after modifications to shape the early current pulse through them. Benefits and drawbacks for each configuration are discussed to provide potential X-pinch users with the information required to choose the configuration best suited to their needs.

More Details

Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma

Philosophical Transactions of the Royal Society. A, Mathematical, Physical and Engineering Sciences

Kawahito, D.; Bailly-Grandvaux, M.; Dozieres, M.; Mcguffey, C.; Forestier-Colleoni, P.; Peebles, J.; Honrubia, J.J.; Khiar, B.; Hansen, Stephanie B.; Tzeferacos, P.; Wei, M.S.; Krauland, C.M.; Gourdain, P.; Davies, Peter B.; Matsuo, K.; Fujioka, S.; Campbell, E.M.; Santos, J.J.; Batani, D.; Bhutwala, K.; Zhang, S.; Beg, F.N.

Inertial confinement fusion approaches involve the creation of high-energy-density states through compression. High gain scenarios may be enabled by the beneficial heating from fast electrons produced with an intense laser and by energy containment with a high-strength magnetic field. Here, we report experimental measurements from a configuration integrating a magnetized, imploded cylindrical plasma and intense laser-driven electrons as well as multi-stage simulations that show fast electrons transport pathways at different times during the implosion and quantify their energy deposition contribution. The experiment consisted of a CH foam cylinder, inside an external coaxial magnetic field of 5 T, that was imploded using 36 OMEGA laser beams. Two-dimensional (2D) hydrodynamic modelling predicts the CH density reaches 9.0 g cm–3, the temperature reaches 920 eV and the external B-field is amplified at maximum compression to 580 T. At pre-determined times during the compression, the intense OMEGA EP laser irradiated one end of the cylinder to accelerate relativistic electrons into the dense imploded plasma providing additional heating. The relativistic electron beam generation was simulated using a 2D particle-in-cell (PIC) code. Finally, three-dimensional hybrid-PIC simulations calculated the electron propagation and energy deposition inside the target and revealed the roles the compressed and self-generated B-fields play in transport. During a time window before the maximum compression time, the self-generated B-field on the compression front confines the injected electrons inside the target, increasing the temperature through Joule heating. For a stronger B-field seed of 20 T, the electrons are predicted to be guided into the compressed target and provide additional collisional heating.

More Details

IMPROVED PERFORMANCE OF MAGNETIZED LINER INERTIAL FUSION EXPERIMENTS WITH HIGH-ENERGY LOW-MIX LASER PREHEAT CONFIGURATIONS

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Weis, Matthew R.; Jennings, Christopher A.; Gomez, Matthew R.; Fein, Jeffrey R.; Ampleford, David A.; Bliss, David E.; Chandler, Gordon A.; Glinsky, Michael E.; Hahn, Kelly; Hansen, Stephanie B.; Hanson, Joseph C.; Harding, Eric H.; Knapp, Patrick K.; Mangan, Michael M.; Perea, L.; Peterson, Kyle J.; Porter, John L.; Rambo, Patrick K.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Carlos; Schwarz, Jens S.; Shores, Jonathon S.; Sinars, Daniel S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Whittemore, K.; Paguio, Reny; Smith, Gary L.; York, Adam Y.

Abstract not provided.

Review of the first charged-particle transport coefficient comparison workshop

High Energy Density Physics

Hansen, Stephanie B.; Murillo, M.S.; Stanton, L.G.

We present the results of the first Charged-Particle Transport Coefficient Code Comparison Workshop, which was held in Albuquerque, NM October 4–6, 2016. In this first workshop, scientists from eight institutions and four countries gathered to compare calculations of transport coefficients including thermal and electrical conduction, electron–ion coupling, inter-ion diffusion, ion viscosity, and charged particle stopping powers. Here, we give general background on Coulomb coupling and computational expense, review where some transport coefficients appear in hydrodynamic equations, and present the submitted data. Large variations are found when either the relevant Coulomb coupling parameter is large or computational expense causes difficulties. Understanding the general accuracy and uncertainty associated with such transport coefficients is important for quantifying errors in hydrodynamic simulations of inertial confinement fusion and high-energy density experiments.

More Details

Narrowband Self-Emission X-ray Imaging of MagLIF Targets on Z

Gomez, Matthew R.; Fein, Jeffrey R.; Hansen, Stephanie B.; Harvey-Thompson, Adam J.; Dunham, Gregory S.; Knapp, Patrick K.; Slutz, Stephen A.; Weis, Matthew R.; Jennings, Christopher A.; Robertson, Grafton K.; Speas, Christopher S.; Maurer, A.; Ampleford, David A.; Rochau, G.A.; Doron, R.; O Nedostup, E.; Stambulchik; Zarnitsky, Y.; Maron, Y.; Paguio, Reny; Tomlinson, Kurt; Huang, H.; Smith, Gary; Taylor, Randy

Abstract not provided.

Performance Scaling in Magnetized Liner Inertial Fusion Experiments

Physical Review Letters

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Ampleford, David A.; Weis, Matthew R.; Myers, Clayton E.; Yager-Elorriaga, David A.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Lamppa, Derek C.; Mangan, Michael M.; Knapp, Patrick K.; Awe, Thomas J.; Chandler, Gordon A.; Cooper, Gary W.; Fein, Jeffrey R.; Geissel, Matthias G.; Glinsky, Michael E.; Laros, James H.; Ruiz, C.L.; Ruiz, Daniel E.; Savage, Mark E.; Schmit, Paul S.; Smith, Ian C.; Styron, J.D.; Porter, John L.; Jones, Brent M.; Mattsson, Thomas M.; Peterson, Kyle J.; Rochau, G.A.; Sinars, Daniel S.

We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burn-averaged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1×1013 (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.

More Details

Temperature distributions and gradients in laser-heated plasmas relevant to magnetized liner inertial fusion

Physical Review E

Harding, Eric H.; Harvey-Thompson, Adam J.; Geissel, Matthias G.; Weis, Matthew R.; Hansen, Stephanie B.; Peterson, Kyle J.; Rochau, G.A.; Carpenter, K.R.; Mancini, R.C.

We present two-dimensional temperature measurements of magnetized and unmagnetized plasma experiments performed at Z relevant to the preheat stage in magnetized liner inertial fusion. The deuterium gas fill was doped with a trace amount of argon for spectroscopy purposes, and time-integrated spatially resolved spectra and narrow-band images were collected in both experiments. The spectrum and image data were included in two separate multiobjective analysis methods to extract the electron temperature spatial distribution Te(r,z). The results indicate that the magnetic field increases Te, the axial extent of the laser heating, and the magnitude of the radial temperature gradients. Comparisons with simulations reveal that the simulations overpredict the extent of the laser heating and underpredict the temperature. Temperature gradient scale lengths extracted from the measurements also permit an assessment of the importance of nonlocal heat transport.

More Details
Results 51–75 of 352
Results 51–75 of 352