Publications

Results 101–155 of 155

Search results

Jump to search filters

Understanding the dynamics of primary Zn-MnO2 alkaline battery gassing with operando visualization and pressure cells

Journal of the Electrochemical Society

Faegh, Ehsan; Omasta, Travis; Hull, Matthew; Ferrin, Sean; Shrestha, Sujan; Lechman, Jeremy B.; Bolintineanu, Dan S.; Zuraw, Michael; Mustain, William E.

The leading cause for safety vent rupture in alkaline batteries is the intrinsic instability of Zn in the highly alkaline reacting environment. Zn and aqueous KOH react in a parasitic process to generate hydrogen gas, which can rupture the seal and vent the hydrogen along with small amounts of electrolyte, and thus, damage consumer devices. Abusive conditions, particularly deep discharge, are known to accelerate this “gassing” phenomena. In order to understand the fundamental drivers and mechanisms for such gassing behavior, the results from multiphysics modeling, ex-situ microscopy and operando measurements of cell potential, pressure and visualization have been combined. Operando measurements were enabled by the development a new research platform that enables a cross-sectional view of a cylindrical Zn-MnO2 primary alkaline battery throughout its discharge and recovery. A second version of this cell can actively measure the in-cell pressure during the discharge. It is shown that steep concentration gradients emerge during the cell discharge through a redox electrolyte mechanism, leading to the formation of high surface area Zn deposits that experience rapid corrosion when the cell rests to its open circuit voltage. Such corrosion is paired with the release of hydrogen and high cell pressure – eventually leading to cell rupture.

More Details

Simulations of the effects of proppant placement on the conductivity and mechanical stability of hydraulic fractures

International Journal of Rock Mechanics and Mining Sciences

Bolintineanu, Dan S.; Rao, Rekha R.; Lechman, Jeremy B.; Romero, Joseph A.; Jove-Colon, Carlos F.; Quintana, Enrico C.; Bauer, Stephen J.; Ingraham, Mathew D.

We generate a wide range of models of proppant-packed fractures using discrete element simulations, and measure fracture conductivity using finite element flow simulations. This allows for a controlled computational study of proppant structure and its relationship to fracture conductivity and stress in the proppant pack. For homogeneous multi-layered packings, we observe the expected increase in fracture conductivity with increasing fracture aperture, while the stress on the proppant pack remains nearly constant. This is consistent with the expected behavior in conventional proppant-packed fractures, but the present work offers a novel quantitative analysis with an explicit geometric representation of the proppant particles. In single-layered packings (i.e. proppant monolayers), there is a drastic increase in fracture conductivity as the proppant volume fraction decreases and open flow channels form. However, this also corresponds to a sharp increase in the mechanical stress on the proppant pack, as measured by the maximum normal stress relative to the side crushing strength of typical proppant particles. We also generate a variety of computational geometries that resemble highly heterogeneous proppant packings hypothesized to form during channel fracturing. In some cases, these heterogeneous packings show drastic improvements in conductivity with only moderate increase in the stress on the proppant particles, suggesting that in certain applications these structures are indeed optimal. We also compare our computer-generated structures to micro computed tomography imaging of a manually fractured laboratory-scale shale specimen, and find reasonable agreement in the geometric characteristics.

More Details

Improved Mechanical Performance Fracture Properties and Reliability of Radical-Cured Thermosets

Redline, Erica; Bolintineanu, Dan S.; Lane, James M.D.; Stevens, Mark J.; Alam, Todd M.; Celina, Mathew C.

The aim of this study was to alter polymerization chemistry to improve network homogeneity in free-radical crosslinked systems. It was hypothesized that a reduction in heterogeneity of the network would lead to improved mechanical performance. Experiments and simulations were carried out to investigate the connection between polymerization chemistry, network structure and mechanical properties. Experiments were conducted on two different monomer systems - the first is a single monomer system, urethane dimethacrylate (UDMA), and the second is a two-monomer system consisting of bisphenol A glycidyl dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA) in a ratio of 70/30 BisGMA/TEGDMA by weight. The methacrylate systems were crosslinked using traditional radical polymeriza- tion (TRP) with azobisisobutyronitrile (AIBN) or benzoyl peroxide (BPO) as an initiator; TRP systems were used as the control. The monomers were also cross-linked using activator regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) as a type of controlled radical polymerization (CRP). FTIR and DSC were used to monitor reac- tion kinetics of the systems. The networks were analyzed using NMR, DSC, X-ray diffraction (XRD), atomic force microscopy (AFM), and small angle X-ray scattering (SAXS). These techniques were employed in an attempt to quantify differences between the traditional and controlled radical polymerizations. While a quantitative methodology for characterizing net- work morphology was not established, SAXS and AFM have shown some promising initial results. Additionally, differences in mechanical behavior were observed between traditional and controlled radical polymerized thermosets in the BisGMA/TEGDMA system but not in the UDMA materials; this finding may be the result of network ductility variations between the two materials. Coarse-grained molecular dynamics simulations employing a novel model of the CRP reaction were carried out for the UDMA system, with parameters calibrated based on fully atomistic simulations of the UDMA monomer in the liquid state. Detailed metrics based on network graph theoretical approaches were implemented to quantify the bond network topology resulting from simulations. For a broad range of polymerization parameters, no discernible differences were seen between TRP and CRP UDMA simulations at equal conversions, although clear differences exist as a function of conversion. Both findings are consistent with experiments. Despite a number of shortcomings, these models have demonstrated the potential of molecular simulations for studying network topology in these systems.

More Details

Final Report for LDRD: The Effect of Proppant Placement on Closure of Fractured Shale Gas Wells

Ingraham, Mathew D.; Bolintineanu, Dan S.; Rao, Rekha R.; Mondy, Lisa A.; Lechman, Jeremy B.; Quintana, Enrico C.; Bauer, Stephen J.

The recent boom in the oil and natural gas industry of hydraulic fracture of source rocks has caused a new era in oil and gas production worldwide. However, there are many parts of this process that are poorly understood and thus hard to control. One of the few things that can be controlled is the process of injection to create the fractures in the subsurface and the subsequent injection of proppants to maintain the permeability of the fractured formation, allowing hydrocarbons to be extracted. The goal of this work was to better understand the injection process and resulting proppant distribution in the fracture through a combination of lab-scale experiments and computational models.

More Details

Laboratory scale hydraulic fracture of marcellus shale

50th US Rock Mechanics Geomechanics Symposium 2016

Ingraham, Mathew D.; Bolintineanu, Dan S.; Rao, Rekha R.; Bauer, Stephen J.; Quintana, Enrico C.; Lechman, Jeremy B.

Performing experiments in the laboratory that mimic conditions in the field is challenging. In an attempt to understand hydraulic fracture in the field, and provide laboratory flow results for model verification, an effort to duplicate the typical fracture pattern for long horizontal wells has been made. The typical "disks on a string" fracture formation is caused by properly orienting the long horizontal well such that it is parallel to the minimum principal stress direction, then fracturing the rock. In order to replicate this feature in the laboratory with a traditional cylindrical specimen the test must be performed under extensile stress conditions and the specimen must have been cored parallel to bedding in order to avoid failure along a bedding plane, and replicate bedding orientation in the field. Testing has shown that it is possible to form failure features of this type in the laboratory. A novel method for jacketing is employed to allow fluid to flow out of the fracture and leave the specimen without risking the integrity of the jacket; this allows proppant to be injected into the fracture, simulating loss of fracturing fluids to the formation, and allowing a solid proppant pack to be developed.

More Details

Laboratory scale hydraulic fracture of marcellus shale

50th US Rock Mechanics / Geomechanics Symposium 2016

Ingraham, Mathew D.; Bolintineanu, Dan S.; Rao, Rekha R.; Bauer, Stephen J.; Quintana, Enrico C.; Lechman, Jeremy B.

Performing experiments in the laboratory that mimic conditions in the field is challenging. In an attempt to understand hydraulic fracture in the field, and provide laboratory flow results for model verification, an effort to duplicate the typical fracture pattern for long horizontal wells has been made. The typical "disks on a string" fracture formation is caused by properly orienting the long horizontal well such that it is parallel to the minimum principal stress direction, then fracturing the rock. In order to replicate this feature in the laboratory with a traditional cylindrical specimen the test must be performed under extensile stress conditions and the specimen must have been cored parallel to bedding in order to avoid failure along a bedding plane, and replicate bedding orientation in the field. Testing has shown that it is possible to form failure features of this type in the laboratory. A novel method for jacketing is employed to allow fluid to flow out of the fracture and leave the specimen without risking the integrity of the jacket; this allows proppant to be injected into the fracture, simulating loss of fracturing fluids to the formation, and allowing a solid proppant pack to be developed.

More Details

Sphere-by-Sphere Manufacturing of 3D Microscale Granular Materials

Boechler, Nicholas; Brake, M.R.W.; Mcgonigle, Lorcan; Kuhr, Bryan R.; Wallen, Samuel P.; Lechman, Jeremy B.; Bolintineanu, Dan S.

Two of the central challenges in the mechanical design of components in nuclear systems are the dissipation of energy from external shocks and the localization of energy in energetic materials. This research seeks to address these problems by developing a patterned granular microstructure that can be optimized to direct or impede the transfer of energy carried by stress waves. Such structures require the development of a manufacturing technique that can yield perfectly ordered lattices. Two branches of research are detailed here: the development of a sphere-by-sphere additive manufacturing technique, and the development of a framework for modeling the technique in order to guide future improvements. Proof of concept of the method is demonstrated, and recommendations for future work are made.

More Details

Diffusion in Jammed Particle Packs

Physical Review Letters

Bolintineanu, Dan S.; Grest, Gary S.; Lechman, Jeremy B.; Silbert, Leonardo E.

Using random walk simulations we explore diffusive transport through monodisperse sphere packings over a range of packing fractions φ in the vicinity of the jamming transition at φc. Various diffusion properties are computed over several orders of magnitude in both time and packing pressure. Two well-separated regimes of normal "Fickian" diffusion, where the mean squared displacement is linear in time, are observed. The first corresponds to diffusion inside individual spheres, while the latter is the long-time bulk diffusion. The intermediate anomalous diffusion regime and the long-time value of the diffusion coefficient are both shown to be controlled by particle contacts, which in turn depend on proximity to φc. The time required to recover normal diffusion t∗ scales as (φ - φc)-0.5 and the long-time diffusivity D∞ ∼ (φ - φc)0.5, or D∞ ∼ 1/t∗. It is shown that the distribution of mean first passage times associated with the escape of random walkers between neighboring particles controls both t∗ and D∞ in the limit φ → φc.

More Details

Ligand structure and mechanical properties of single-nanoparticle-thick membranes

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

Salerno, Kenneth M.; Bolintineanu, Dan S.; Lane, James M.D.; Grest, Gary S.

The high mechanical stiffness of single-nanoparticle-thick membranes is believed to result from the local structure of ligand coatings that mediate interactions between nanoparticles. These ligand structures are not directly observable experimentally. We use molecular dynamics simulations to observe variations in ligand structure and simultaneously measure variations in membrane mechanical properties. We have shown previously that ligand end group has a large impact on ligand structure and membrane mechanical properties. Here we introduce and apply quantitative molecular structure measures to these membranes and extend analysis to multiple nanoparticle core sizes and ligand lengths. Simulations of nanoparticle membranes with a nanoparticle core diameter of 4 or 6 nm, a ligand length of 11 or 17 methylenes, and either carboxyl (COOH) or methyl (CH3) ligand end groups are presented. In carboxyl-terminated ligand systems, structure and interactions are dominated by an end-to-end orientation of ligands. In methyl-terminated ligand systems large ordered ligand structures form, but nanoparticle interactions are dominated by disordered, partially interdigitated ligands. Core size and ligand length also affect both ligand arrangement within the membrane and the membrane's macroscopic mechanical response, but are secondary to the role of the ligand end group. Moreover, the particular end group (COOH or CH3) alters the nature of how ligand length, in turn, affects the membrane properties. The effect of core size does not depend on the ligand end group, with larger cores always leading to stiffer membranes. Asymmetry in the stress and ligand density is observed in membranes during preparation at a water-vapor interface, with the stress asymmetry persisting in all membranes after drying.

More Details

Direct comparisons of x-ray scattering and atomistic molecular dynamics simulations for precise acid copolymers and Ionomers

Macromolecules

Buitrago, C.F.; Bolintineanu, Dan S.; Seitz, Michelle E.; Opper, Kathleen L.; Wagener, Kenneth B.; Stevens, Mark J.; Frischknecht, Amalie L.; Winey, Karen I.

Designing acid- and ion-containing polymers for optimal proton, ion, or water transport would benefit profoundly from predictive models or theories that relate polymer structures with ionomer morphologies. Recently, atomistic molecular dynamics (MD) simulations were performed to study the morphologies of precise poly(ethylene-co-acrylic acid) copolymer and ionomer melts. Here, we present the first direct comparisons between scattering profiles, I(q), calculated from these atomistic MD simulations and experimental X-ray data for 11 materials. This set of precise polymers has spacers of exactly 9, 15, or 21 carbons between acid groups and has been partially neutralized with Li, Na, Cs, or Zn. In these polymers, the simulations at 120 °C reveal ionic aggregates with a range of morphologies, from compact, isolated aggregates (type 1) to branched, stringy aggregates (type 2) to branched, stringy aggregates that percolate through the simulation box (type 3). Excellent agreement is found between the simulated and experimental scattering peak positions across all polymer types and aggregate morphologies. The shape of the amorphous halo in the simulated I(q) profile is in excellent agreement with experimental I(q). The modified hard-sphere scattering model fits both the simulation and experimental I(q) data for type 1 aggregate morphologies, and the aggregate sizes and separations are in agreement. Given the stringy structure in types 2 and 3, we develop a scattering model based on cylindrical aggregates. Both the spherical and cylindrical scattering models fit I(q) data from the polymers with type 2 and 3 aggregates equally well, and the extracted aggregate radii and inter- and intra-aggregate spacings are in agreement between simulation and experiment. Furthermore, these dimensions are consistent with real-space analyses of the atomistic MD simulations. By combining simulations and experiments, the ionomer scattering peak can be associated with the average distance between branches of type 2 or 3 aggregates. This direct comparison of X-ray scattering data to the atomistic MD simulations is a substantive step toward providing a comprehensive, predictive model for ionomer morphology, gives substantial support for this atomistic MD model, and provides new credibility to the presence of stringy, branched, and percolated ionic aggregates in precise ionomer melts.

More Details

Toward Multi-scale Modeling and simulation of conduction in heterogeneous materials

Lechman, Jeremy B.; Battaile, Corbett C.; Bolintineanu, Dan S.; Cooper, Marcia; Erikson, William W.; Foiles, Stephen M.; Kay, Jeffrey J.; Phinney, Leslie; Piekos, Edward S.; Specht, Paul E.; Wixom, Ryan R.; Yarrington, C.D.

This report summarizes a project in which the authors sought to develop and deploy: (i) experimental techniques to elucidate the complex, multiscale nature of thermal transport in particle-based materials; and (ii) modeling approaches to address current challenges in predicting performance variability of materials (e.g., identifying and characterizing physical- chemical processes and their couplings across multiple length and time scales, modeling information transfer between scales, and statically and dynamically resolving material structure and its evolution during manufacturing and device performance). Experimentally, several capabilities were successfully advanced. As discussed in Chapter 2 a flash diffusivity capability for measuring homogeneous thermal conductivity of pyrotechnic powders (and beyond) was advanced; leading to enhanced characterization of pyrotechnic materials and properties impacting component development. Chapter 4 describes success for the first time, although preliminary, in resolving thermal fields at speeds and spatial scales relevant to energetic components. Chapter 7 summarizes the first ever (as far as the authors know) application of TDTR to actual pyrotechnic materials. This is the first attempt to actually characterize these materials at the interfacial scale. On the modeling side, new capabilities in image processing of experimental microstructures and direct numerical simulation on complicated structures were advanced (see Chapters 3 and 5). In addition, modeling work described in Chapter 8 led to improved prediction of interface thermal conductance from first principles calculations. Toward the second point, for a model system of packed particles, significant headway was made in implementing numerical algorithms and collecting data to justify the approach in terms of highlighting the phenomena at play and pointing the way forward in developing and informing the kind of modeling approach originally envisioned (see Chapter 6). In both cases much more remains to be accomplished.

More Details

Atomistic simulations predict a surprising variety of morphologies in precise ionomers

ACS Macro Letters

Bolintineanu, Dan S.; Stevens, Mark J.; Frischknecht, Amalie L.

The nature of ionic aggregates in ionomers remains an important open question, particularly considering its significance to their unique electrical and mechanical properties. We have carried out fully atomistic molecular dynamics simulations of melts of lithium-neutralized precise ionomers that reveal the structural features of ionic aggregates in unprecedented detail. In particular, we observe a rich variety of aggregate morphologies depending on neutralization level and ionic content, including string-like and percolated aggregates. The traditional assumption of spherical ionic aggregates with liquid-like ordering that is typically used to interpret experimental scattering data is too simplistic; a more rich and complex set of structures exist that also fit the scattering data. © 2013 American Chemical Society.

More Details
Results 101–155 of 155
Results 101–155 of 155