Uncertainty Quantification for a Turbulent Round Jet Using Multifidelity Karhunen-Love Expansions
Abstract not provided.
Abstract not provided.
Computational Mechanics
We demonstrate a Bayesian method for the “real-time” characterization and forecasting of partially observed COVID-19 epidemic. Characterization is the estimation of infection spread parameters using daily counts of symptomatic patients. The method is designed to help guide medical resource allocation in the early epoch of the outbreak. The estimation problem is posed as one of Bayesian inference and solved using a Markov chain Monte Carlo technique. The data used in this study was sourced before the arrival of the second wave of infection in July 2020. The proposed modeling approach, when applied at the country level, generally provides accurate forecasts at the regional, state and country level. The epidemiological model detected the flattening of the curve in California, after public health measures were instituted. The method also detected different disease dynamics when applied to specific regions of New Mexico.
Journal of Machine Learning for Modeling and Computing
Gaussian process regression is a popular Bayesian framework for surrogate modeling of expensive data sources. As part of a larger effort in scientific machine learning, many recent works have incorporated physical constraints or other a priori information within Gaussian process regression to supplement limited data and regularize the behavior of the model. We provide an overview and survey of several classes of Gaussian process constraints, including positivity or bound constraints, monotonicity and convexity constraints, differential equation constraints provided by linear PDEs, and boundary condition constraints. We compare the strategies behind each approach as well as the differences in implementation, concluding with a discussion of the computational challenges introduced by constraints.
Abstract not provided.
TChem is an open source software library for solving complex computational chemistry problems and analyzing detailed chemical kinetic models. The software provides support for: complex kinetic models for gas-phase and surface chemistry; thermodynamic properties based on NASA polynomials; species production/consumption rates; stable time integrator for solving stiff time ordinary differential equations; and, reactor models such as homogenous gas-phase ignition (with analytical Jacobian matrices), continuously stirred tank reactor, plug-flow reactor. This toolkit builds upon earlier versions that were written in C and featured tools for gas-phase chemistry only. The current version of the software was completely refactored in C++, uses an object-oriented programming model, and adopts Kokkos as its portability layer to make it ready for the next generation computing architectures i.e., multi/many core computing platforms with GPU accelerators. We have expanded the range of kinetic models to include surface chemistry and have added examples pertaining to Continuously Stirred Tank Reactors (CSTR) and Plug Flow Reactor (PFR) models to complement the homogenous ignition examples present in the earlier versions. To exploit the massive parallelism available from modern computing platforms, the current software interface is designed to evaluate samples in parallel, which enables large scale parametric studies, e.g. for sensitivity analysis and model calibration.
In this report we investigate the utility of one-dimensional convolutional neural network (CNN) models in epidemiological forecasting. Deep learning models, especially variants of recurrent neural networks (RNNs) have been studied for influenza forecasting, and have achieved higher forecasting skill compared to conventional models such as ARIMA models. In this study, we adapt two neural networks that employ one-dimensional temporal convolutional layers as a primary building block temporal convolutional networks and simple neural attentive meta-learner for epidemiological forecasting and test them with influenza data from the US collected over 2010-2019. We find that epidemiological forecasting with CNNs is feasible, and their forecasting skill is comparable to, and at times, superior to, RNNs. Thus CNNs and RNNs bring the power of nonlinear transformations to purely data-driven epidemiological models, a capability that heretofore has been limited to more elaborate mechanistic/compartmental disease models.
This report summarizes the goals and findings of eight research projects conducted under the Computing and Information Sciences (CIS) Research Foundation and related to the COVID- 19 pandemic. The projects were all formulated in response to Sandia's call for proposals for rapid-response research with the potential to have a positive impact on the global health emergency. Six of the projects in the CIS portfolio focused on modeling various facets of disease spread, resource requirements, testing programs, and economic impact. The two remaining projects examined the use of web-crawlers and text analytics to allow rapid identification of articles relevant to specific technical questions, and categorization of the reliability of content. The portfolio has collectively produced methods and findings that are being applied by a range of state, regional, and national entities to support enhanced understanding and prediction of the pandemic's spread and its impacts.
This report summarizes work done under the Laboratory Directed Research and Development (LDRD) project titled "Incorporating physical constraints into Gaussian process surrogate models?' In this project, we explored a variety of strategies for constraint implementations. We considered bound constraints, monotonicity and related convexity constraints, Gaussian processes which are constrained to satisfy linear operator constraints which represent physical laws expressed as partial differential equations, and intrinsic boundary condition constraints. We wrote three papers and are currently finishing two others. We developed initial software implementations for some approaches. This report summarizes the work done under this LDRD.
We developed a computational strategy to correlate bulk combustion metrics of novel fuels and blends in the low-temperature autoignition regime with measurements of key combustion intermediates in a small-volume, dilute, high-pressure reactor. We used neural net analysis of a large simulation dataset to obtain an approximate correlation and proposed experimental and computational steps needed to refine such a predictive correlation. We also designed and constructed a high-pressure laboratory apparatus to conduct the proposed measurements and demonstrated its performance on three canonical fuels: n-heptane, i-octane, and dimethyl ether.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Combustion and Flame
Chemical kinetics simulations are used to explore whether detailed measurements of relevant chemical species during the oxidation of very dilute fuels (less than 1 Torr partial pressure) in a high-pressure plug flow reactor (PFR) can predict autoignition propensity. We find that for many fuels the timescale for the onset of spontaneous oxidation in dilute fuel/air mixtures in a simple PFR is similar to the 1st-stage ignition delay time (IDT) at stoichiometric engine-relevant conditions. For those fuels that deviate from this simple trend, the deviation is closely related to the peak rate of production of OH, HO2, CH2O, and CO2 formed during oxidation. We use these insights to show that an accurate correlation between simulated profiles of these species in a PFR and 1st-stage IDT can be developed using convolutional neural networks. Our simulations suggest that the accuracy of such a correlation is 10–50%, which is appropriate for rapid fuel screening and may be sufficient for predictive fuel performance modeling.
This report documents a statistical method for the "real-time" characterization of partially observed epidemics. Observations consist of daily counts of symptomatic patients, diagnosed with the disease. Characterization, in this context, refers to estimation of epidemiological parameters that can be used to provide short-term forecasts of the ongoing epidemic, as well as to provide gross information for the time-dependent infection rate. The characterization problem is formulated as a Bayesian inverse problem, and is predicated on a model for the distribution of the incubation period. The model parameters are estimated as distributions using a Markov Chain Monte Carlo (MCMC) method, thus quantifying the uncertainty in the estimates. The method is applied to the COVID-19 pandemic of 2020, using data at the country, provincial (e.g., states) and regional (e.g. county) levels. The epidemiological model includes a stochastic component due to uncertainties in the incubation period. This model-form uncertainty is accommodated by a pseudo-marginal Metropolis-Hastings MCMC sampler, which produces posterior distributions that reflect this uncertainty. We approximate the discrepancy between the data and the epidemiological model using Gaussian and negative binomial error models; the latter was motivated by the over-dispersed count data. For small daily counts we find the performance of the calibrated models to be similar for the two error models. For large daily counts the negative-binomial approximation is numerically unstable unlike the Gaussian error model. Application of the model at the country level (for the United States, Germany, Italy, etc.) generally provided accurate forecasts, as the data consisted of large counts which suppressed the day-to-day variations in the observations. Further, the bulk of the data is sourced over the duration before the relaxation of the curbs on population mixing, and is not confounded by any discernible country-wide second wave of infections. At the state-level, where reporting was poor or which evinced few infections (e.g., New Mexico), the variance in the data posed some, though not insurmountable, difficulties, and forecasts were able to capture the data with large uncertainty bounds. The method was found to be sufficiently sensitive to discern the flattening of the infection and epidemic curve due to shelter-in-place orders after around 90% quantile for the incubation distribution (about 10 days for COVID-19). The proposed model was also used at a regional level to compare the forecasts for the central and north-west regions of New Mexico. Modeling the data for these regions illustrated different disease spread dynamics captured by the model. While in the central region the daily counts peaked in the late April, in the north-west region the ramp-up continued for approximately three more weeks.
Sandia National Laboratories currently has 27 COVID-related Laboratory Directed Research & Development (LDRD) projects focused on helping the nation during the pandemic. These LDRD projects cross many disciplines including bioscience, computing & information sciences, engineering science, materials science, nanodevices & microsystems, and radiation effects & high energy density science.
The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 3.1.0 offers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sensitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.
Transitional Markov Chain Monte Carlo (TMCMC) is a variant of a class of Markov Chain Monte Carlo algorithms known as tempering-based methods. In this report, the implementation of TMCMC in the Uncertainty Quantification Toolkit is investigated through the sampling of high-dimensional distributions, multi-modal distributions, and nonlinear manifolds. Furthermore, the Bayesian model evidence estimates obtained from TMCMC are tested on problems with known analytical solutions and shown to provide consistent results.
Journal of Computational Physics
We demonstrate, on a scramjet combustion problem, a constrained probabilistic learning approach that augments physics-based datasets with realizations that adhere to underlying constraints and scatter. The constraints are captured and delineated through diffusion maps, while the scatter is captured and sampled through a projected stochastic differential equation. The objective function and constraints of the optimization problem are then efficiently framed as non-parametric conditional expectations. Different spatial resolutions of a large-eddy simulation filter are used to explore the robustness of the model to the training dataset and to gain insight into the significance of spatial resolution on optimal design.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
In this report we describe an enhanced methodology for performing stochastic Bayesian inversions of atmospheric trace gas inversions that allows the time variation of model parameters to be inferred. We use measurements of methane atmospheric mixing ratio made in Livermore, California along with atmospheric transport modeling and published prior estimates of emissions to estimate the regional emissions of methane and the temporal variations in inferred bias parameters. We compute Bayesian model evidence and continuous rank probability score to optimize the model with respect to temporal resolution. Using two different emissions inventories, we perform inversions for a series of models with increasing temporal resolution in the model bias representation. We show that temporal variation in the model bias can improve the model fit and can also increase the likelihood that the parameterization is appropriate, as measured by the Bayesian model evidence.