Randomized Functional Sparse Tucker Tensor for Compression and Fast Visualization of Scientific Data
Abstract not provided.
Abstract not provided.
The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 3.1.0 offers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sensitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.
Journal of Mathematical Chemistry
We propose a method that exploits sparse representation of potential energy surfaces (PES) on a polynomial basis set selected by compressed sensing. The method is useful for studies involving large numbers of PES evaluations, such as the search for local minima, transition states, or integration. We apply this method for estimating zero point energies and frequencies of molecules using a three step approach. In the first step, we interpret the PES as a sparse tensor on polynomial basis and determine its entries by a compressed sensing based algorithm using only a few PES evaluations. Then, we implement a rank reduction strategy to compress this tensor in a suitable low-rank canonical tensor format using standard tensor compression tools. This allows representing a high dimensional PES as a small sum of products of one dimensional functions. Finally, a low dimensional Gauss–Hermite quadrature rule is used to integrate the product of sparse canonical low-rank representation of PES and Green’s function in the second-order diagrammatic vibrational many-body Green’s function theory (XVH2) for estimation of zero-point energies and frequencies. Numerical tests on molecules considered in this work suggest a more efficient scaling of computational cost with molecular size as compared to other methods.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Computer Methods in Applied Mechanics and Engineering
A new method for fast evaluation of high dimensional integrals arising in quantum mechanics is proposed. Here, the method is based on sparse approximation of a high dimensional function followed by a low-rank compression. In the first step, we interpret the high dimensional integrand as a tensor in a suitable tensor product space and determine its entries by a compressed sensing based algorithm using only a few function evaluations. Secondly, we implement a rank reduction strategy to compress this tensor in a suitable low-rank tensor format using standard tensor compression tools. This allows representing a high dimensional integrand function as a small sum of products of low dimensional functions. Finally, a low dimensional Gauss–Hermite quadrature rule is used to integrate this low-rank representation, thus alleviating the curse of dimensionality. Finally, numerical tests on synthetic functions, as well as on energy correction integrals for water and formaldehyde molecules demonstrate the efficiency of this method using very few function evaluations as compared to other integration strategies.
Abstract not provided.
Molecular Physics
A new method is proposed for a fast evaluation of high-dimensional integrals of potential energy surfaces (PES) that arise in many areas of quantum dynamics. It decomposes a PES into a canonical low-rank tensor format, reducing its integral into a relatively short sum of products of low-dimensional integrals. The decomposition is achieved by the alternating least squares (ALS) algorithm, requiring only a small number of single-point energy evaluations. Therefore, it eradicates a force-constant evaluation as the hotspot of many quantum dynamics simulations and also possibly lifts the curse of dimensionality. This general method is applied to the anharmonic vibrational zero-point and transition energy calculations of molecules using the second-order diagrammatic vibrational many-body Green's function (XVH2) theory with a harmonic-approximation reference. In this application, high dimensional PES and Green's functions are both subjected to a low-rank decomposition. Evaluating the molecular integrals over a low-rank PES and Green's functions as sums of low-dimensional integrals using the Gauss–Hermite quadrature, this canonical-tensor-decomposition-based XVH2 (CT-XVH2) achieves an accuracy of 0.1 cm−1 or higher and nearly an order of magnitude speedup as compared with the original algorithm using force constants for water and formaldehyde.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.