Publications

Results 101–125 of 167

Search results

Jump to search filters

Repeated play of the SVM game as a means of adaptive classification

Proceedings of the International Joint Conference on Neural Networks

Vineyard, Craig M.; Verzi, Stephen J.; James, Conrad D.; Aimone, James B.; Heileman, Gregory L.

The field of machine learning strives to develop algorithms that, through learning, lead to generalization; that is, the ability of a machine to perform a task that it was not explicitly trained for. An added challenge arises when the problem domain is dynamic or non-stationary with the data distributions or categorizations changing over time. This phenomenon is known as concept drift. Game-theoretic algorithms are often iterative by nature, consisting of repeated game play rather than a single interaction. Effectively, rather than requiring extensive retraining to update a learning model, a game-theoretic approach can adjust strategies as a novel approach to concept drift. In this paper we present a variant of our Support Vector Machine (SVM) Game classifier which may be used in an adaptive manner with repeated play to address concept drift, and show results of applying this algorithm to synthetic as well as real data.

More Details

A Signal Processing Approach for Cyber Data Classification with Deep Neural Networks

Procedia Computer Science

James, Conrad D.; Aimone, James B.

Recent cyber security events have demonstrated the need for algorithms that adapt to the rapidly evolving threat landscape of complex network systems. In particular, human analysts often fail to identify data exfiltration when it is encrypted or disguised as innocuous data. Signature-based approaches for identifying data types are easily fooled and analysts can only investigate a small fraction of network events. However, neural networks can learn to identify subtle patterns in a suitably chosen input space. To this end, we have developed a signal processing approach for classifying data files which readily adapts to new data formats. We evaluate the performance for three input spaces consisting of the power spectral density, byte probability distribution and sliding-window entropy of the byte sequence in a file. By combining all three, we trained a deep neural network to discriminate amongst nine common data types found on the Internet with 97.4% accuracy.

More Details

MapReduce SVM game

Procedia Computer Science

Vineyard, Craig M.; Verzi, Stephen J.; James, Conrad D.; Aimone, James B.; Heileman, Gregory L.

Despite technological advances making computing devices faster, smaller, and more prevalent in today's age, data generation and collection has outpaced data processing capabilities. Simply having more compute platforms does not provide a means of addressing challenging problems in the big data era. Rather, alternative processing approaches are needed and the application of machine learning to big data is hugely important. The MapReduce programming paradigm is an alternative to conventional supercomputing approaches, and requires less stringent data passing constrained problem decompositions. Rather, MapReduce relies upon defining a means of partitioning the desired problem so that subsets may be computed independently and recom-bined to yield the net desired result. However, not all machine learning algorithms are amenable to such an approach. Game-theoretic algorithms are often innately distributed, consisting of local interactions between players without requiring a central authority and are iterative by nature rather than requiring extensive retraining. Effectively, a game-theoretic approach to machine learning is well suited for the MapReduce paradigm and provides a novel, alternative new perspective to addressing the big data problem. In this paper we present a variant of our Support Vector Machine (SVM) Game classifier which may be used in a distributed manner, and show an illustrative example of applying this algorithm.

More Details

Development, characterization, and modeling of a TaOx ReRAM for a neuromorphic accelerator

ECS Transactions

Marinella, Matthew J.; Mickel, Patrick R.; Lohn, Andrew L.; Hughart, David R.; Bondi, Robert J.; Mamaluy, Denis M.; Hjalmarson, Harold P.; Stevens, James E.; Decker, Seth D.; Apodaca, Roger A.; Evans, Brian R.; Aimone, James B.; Rothganger, Fredrick R.; James, Conrad D.; DeBenedictis, Erik

Resistive random access memory (ReRAM), or memristors, may be capable of significantly improve the efficiency of neuromorphic computing, when used as a central component of an analog hardware accelerator. However, the significant electrical variation within a device and between devices degrades the maximum efficiency and accuracy which can be achieved by a ReRAMbased neuromorphic accelerator. In this report, the electrical variability is characterized, with a particular focus on that which is due to fundamental, intrinsic factors. Analytical and ab initio models are presented which offer some insight into the factors responsible for this variability.

More Details

Development, characterization, and modeling of a TaOx ReRAM for a neuromorphic accelerator

ECS Transactions

Marinella, Matthew J.; Mickel, Patrick R.; Lohn, Andrew L.; Hughart, David R.; Bondi, Robert J.; Mamaluy, Denis M.; Hjalmarson, Harold P.; Stevens, James E.; Decker, Seth D.; Apodaca, Roger A.; Evans, Brian R.; Aimone, James B.; Rothganger, Fredrick R.; James, Conrad D.; DeBenedictis, Erik

Resistive random access memory (ReRAM), or memristors, may be capable of significantly improve the efficiency of neuromorphic computing, when used as a central component of an analog hardware accelerator. However, the significant electrical variation within a device and between devices degrades the maximum efficiency and accuracy which can be achieved by a ReRAMbased neuromorphic accelerator. In this report, the electrical variability is characterized, with a particular focus on that which is due to fundamental, intrinsic factors. Analytical and ab initio models are presented which offer some insight into the factors responsible for this variability.

More Details
Results 101–125 of 167
Results 101–125 of 167