Publications

Results 1–25 of 49

Search results

Jump to search filters

Magnetized High-Energy-Density Plasma Experiments at MIT

Hare, Jack; Datta, Rishabh; Varnish, Thomas; Lebedev, Sergey; Jerry, Chittenden; Crilly, Aidan; Halliday, Jack; Russell, Danny; Chandler, Katherine; Fox, Will; Hantao, Ji; Myers, Clayton E.; Aragon, Carlos A.; Jennings, Christopher A.; Ampleford, David A.; Hansen, Stephanie B.; Yager-Elorriaga, David A.; Harding, Eric H.; Shipley, Gabriel A.; Harmon, Roger L.; Gonzalez, Josue; Molina, Leo M.

Abstract not provided.

AC compensation of 3D magnetic diagnostic signals in DIII-D and National Spherical Torus Experiment-Upgrade (NSTX-U) for real-time application

Review of Scientific Instruments

Munaretto, S.; Myers, Clayton E.; Gerhardt, S.P.; Logan, N.C.; Menard, J.E.; Strait, E.J.

A time domain algorithm has been developed to remove the vacuum pickup generated by both coil current (DC) and induced vessel current (AC) in real time from three dimensional (3D) magnetic diagnostic signals in the National Spherical Torus Experiment-Upgrade (NSTX-U) and DIII-D tokamaks. The possibility of detecting 3D plasma perturbations in real time is essential in modern and future tokamaks to avoid and control MHD instabilities. The presence of vacuum field pickup, due to toroidally asymmetric (3D) coils or to misalignment between sensors and axisymmetric (2D) coils, pollutes the measured plasma 3D field, making the detection of the magnetic field produced by the plasma challenging. Although the DC coupling between coils and sensors can be easily calculated and removed, the AC part is more difficult. An algorithm based on a layered low-pass filter approach for the AC compensation and its application for DIII-D and NSTX-U data is presented, showing that this method reduces the vacuum pickup to the noise level. Comparison of plasma response measurements with and without vacuum compensation shows that accurate mode locking detection and plasma response identification require precise AC and DC compensations.

More Details

Radiatively-Cooled Magnetic Reconnection Experiments at the Z Pulsed-Power Facility

Hare, Jack; Datta, Rishabh; Sergey, Lebedev; Chittenden, Jerry; Crilly, Aidan; Bland, Simon; Halliday, Jack; Russell, Danny; Fox, Will; Hantao, Ji; Kuranz, Carolyn; Myers, Clayton E.; Aragon, Carlos A.; Jennings, Christopher A.; Ampleford, David A.; Beckwith, Kristian B.; Harding, Eric H.; Hansen, Stephanie B.; Dunham, Gregory S.; Edens, Aaron E.; Gonzalez, Josue; Harmon, Roger L.; Kellogg, Jeffrey W.; Jones, Michael J.; Looker, Quinn M.; Molina, Leo M.; Montoya, Michael L.; Patel, Sonal P.; Loisel, Guillaume P.; Speas, Christopher S.; Webb, Timothy J.; Yager-Elorriaga, David A.; Shipley, Gabriel A.; Chandler, Katherine

Abstract not provided.

Radiatively-Cooled Magnetic Reconnection Experiments at the Z Pulsed-Power Facility

Hare, Jack; Datta, Rishabh; Lebedev, Sergey; Chittenden, Jeremy P.; Crilly, Aidan; Bland, Simon; Halliday, Jack; Russell, Danny; Fox, Will; Ji, Hantao; Kuranz, Carolyn; Myers, Clayton E.; Aragon, Carlos A.; Jennings, Christopher A.; Ampleford, David A.; Hansen, Stephanie B.; Harding, Eric H.; Dunham, Gregory S.; Edens, Aaron E.; Gomez, Matthew R.; Harmon, Roger L.; Gonzalez, Josue; Kellogg, Jeffrey W.; Patel, Sonal P.; Looker, Quinn M.; Yager-Elorriaga, David A.; Chandler, Katherine

Abstract not provided.

Studying the Richtmyer–Meshkov instability in convergent geometry under high energy density conditions using the Decel platform

Physics of Plasmas

Yager-Elorriaga, David A.; Doss, Forrest W.; Shipley, Gabriel A.; Ruiz, Daniel E.; Porwitzky, Andrew J.; Fein, Jeffrey R.; Merritt, Elizabeth C.; Martin, Matthew; Myers, Clayton E.; Jennings, Christopher A.; Marshall, Dustin J.; Shulenburger, Luke N.

The “Decel” platform at Sandia National Laboratories investigates the Richtmyer–Meshkov instability (RMI) in converging geometry under high energy density conditions [Knapp et al., Phys. Plasmas 27, 092707 (2020)]. In Decel, the Z machine magnetically implodes a cylindrical beryllium liner filled with liquid deuterium, launching a converging shock toward an on-axis beryllium rod machined with sinusoidal perturbations. The passage of the shock deposits vorticity along the Be/D2 interface, causing the perturbations to grow. In this paper, we present platform improvements along with recent experimental results. To improve the stability of the imploding liner to the magneto Rayleigh–Taylor instability, we modified its acceleration history by shortening the Z electrical current pulse. Next, we introduce a “split rod” configuration that allows two axial modes to be fielded simultaneously in different axial locations along the rod, doubling our data per experiment. We then demonstrate that asymmetric slots in the return current structure modify the magnetic drive pressure on the surface of the liner, advancing the evolution on one side of the rod by multiple ns compared to its 180° counterpart. This effectively enables two snapshots of the instability at different stages of evolution per radiograph with small deviations of the cross-sectional profile of the rod from the circular. Using this platform, we acquired RMI data at 272 and 157 μm wavelengths during the single shock stage. Finally, we demonstrate the utility of these data for benchmarking simulations by comparing calculations using ALEGRA MHD and RageRunner.

More Details

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Nuclear Fusion

Yager-Elorriaga, David A.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Weis, Matthew R.; Weisy; Awe, Thomas J.; Chandler, Gordon A.; Myers, Clayton E.; Fein, Jeffrey R.; Galloway, B.R.; Geissel, Matthias G.; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Laros, James H.; Rambo, Patrick K.; Robertson, Grafton K.; Savage, Mark E.; Shipley, Gabriel A.; Schwarz, Jens S.; Ampleford, David A.; Beckwith, Kristian B.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.

We present an overview of the magneto-inertial fusion (MIF) concept MagLIF (Magnetized Liner Inertial Fusion) pursued at Sandia National Laboratories and review some of the most prominent results since the initial experiments in 2013. In MagLIF, a centimeter-scale beryllium tube or "liner" is filled with a fusion fuel, axially pre-magnetized, laser pre-heated, and finally imploded using up to 20 MA from the Z machine. All of these elements are necessary to generate a thermonuclear plasma: laser preheating raises the initial temperature of the fuel, the electrical current implodes the liner and quasi-adiabatically compresses the fuel via the Lorentz force, and the axial magnetic field limits thermal conduction from the hot plasma to the cold liner walls during the implosion. MagLIF is the first MIF concept to demonstrate fusion relevant temperatures, significant fusion production (>10^13 primary DD neutron yield), and magnetic trapping of charged fusion particles. On a 60 MA next-generation pulsed-power machine, two-dimensional simulations suggest that MagLIF has the potential to generate multi-MJ yields with significant self-heating, a long-term goal of the US Stockpile Stewardship Program. At currents exceeding 65 MA, the high gains required for fusion energy could be achievable.

More Details

Development of the MARZ platform (Magnetically Ablated Reconnection on Z) to study astrophysically relevant radiative magnetic reconnection in the laboratory

Myers, Clayton E.; Hare, Jack; Ampleford, David A.; Aragon, Carlos A.; Chittenden, Jeremy; Colombo, Anthony P.; Crilly, Aidan; Datta, Rishabh; Edens, Aaron E.; Fox, Will; Gomez, Matthew R.; Halliday, Jack; Hansen, Stephanie B.; Harding, Eric H.; Harmon, Roger L.; Jones, Michael J.; Jennings, Christopher A.; Ji, Hantao; Kuranz, Carolyn; Lebedev, Sergey; Looker, Quinn M.; Melean, Raul; Uzdensky, Dmitri; Webb, Timothy J.

Abstract not provided.

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Yager-Elorriaga, David A.; Gomez, Matthew R.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Knapp, Patrick K.; Schmit, Paul S.; Weis, Matthew R.; Awe, Thomas J.; Chandler, Gordon A.; Mangan, Michael M.; Myers, Clayton E.; Fein, Jeffrey R.; Geissel, Matthias G.; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Webster, Evelyn L.; Rambo, Patrick K.; Robertson, Grafton K.; Savage, Mark E.; Smith, Ian C.; Ampleford, David A.; Beckwith, Kristian B.; Peterson, Kara J.; Porter, John L.; Rochau, G.A.; Sinars, Daniel S.

Abstract not provided.

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Yager-Elorriaga, David A.; Gomez, Matthew R.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Weis, Matthew R.; Awe, Thomas J.; Chandler, Gordon A.; Myers, Clayton E.; Fein, Jeffrey R.; Geissel, Matthias G.; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Laros, James H.; Robertson, Grafton K.; Savage, Mark E.; Ampleford, David A.; Beckwith, Kristian B.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.

Abstract not provided.

The inductively driven transmission line: A passively coupled device for diagnostic applications on the Z pulsed power facility

Review of Scientific Instruments

Myers, Clayton E.; Lamppa, Derek C.; Jennings, Christopher A.; Gomez, Matthew R.; Knapp, Patrick K.; Kossow, Michael R.; Lucero, Larry M.; Yager-Elorriaga, David A.

The inductively driven transmission line (IDTL) is a miniature current-carrying device that passively couples to fringe magnetic fields in the final power feed on the Z Pulsed Power Facility. The IDTL redirects a small amount of Z's magnetic energy along a secondary path to ground, thereby enabling pulsed power diagnostics to be driven in parallel with the primary load for the first time. IDTL experiments and modeling presented here indicate that IDTLs operate non-perturbatively on Z and that they can draw in excess of 150 kA of secondary current, which is enough to drive an X-pinch backlighter. Additional experiments show that IDTLs are also capable of making cleaner, higher-fidelity measurements of the current flowing in the final feed.

More Details

Laboratory study of the torus instability threshold in solar-relevant, line-tied magnetic flux ropes

Astrophysical Journal

Alt, Andrew; Myers, Clayton E.; Ji, Hantao; Jara-Almonte, Jonathan; Yoo, Jongsoo; Bose, Sayak; Goodman, Aaron; Yamada, Masaaki; Kliem, Bernhard; Savcheva, Antonia

Coronal mass ejections (CMEs) occur when long-lived magnetic flux ropes (MFRs) anchored to the solar surface destabilize and erupt away from the Sun. This destabilization is often described in terms of an ideal magnetohydrodynamic instability called the torus instability. It occurs when the external magnetic field decreases sufficiently fast such that its decay index, n = -z θ(ln B) θz, is larger than a critical value, n > ncr, where ncr = 1.5 for a full, large aspect ratio torus. However, when this is applied to solar MFRs, a range of conflicting values for ncr is found in the literature. To investigate this discrepancy, we have conducted laboratory experiments on arched, line-tied flux ropes and applied a theoretical model of the torus instability. Our model describes an MFR as a partial torus with foot points anchored in a conducting surface and numerically calculates various magnetic forces on it. This calculation yields better predictions of ncr that take into account the specific parameters of the MFR. We describe a systematic methodology to properly translate laboratory results to their solar counterparts, provided that the MFRs have a sufficiently small edge safety factor or, equivalently, a large enough twist. After this translation, our model predicts that ncr in solar conditions falls near ncr ~ 0.9 solar and within a larger range of ncr ~ (0.7, 1.2) solar, depending on the parameters. The methodology of translating laboratory MFRs to their solar counterparts enables quantitative investigations of CME initiation through laboratory experiments. These experiments allow for new physics insights that are required for better predictions of space weather events but are difficult to obtain otherwise.

More Details
Results 1–25 of 49
Results 1–25 of 49