Publications

Results 1–25 of 47

Search results

Jump to search filters

A coupled fluid-mechanical workflow to simulate the directed energy deposition additive manufacturing process

Computational Mechanics

Beghini, Lauren L.; Stender, Michael S.; Moser, Daniel M.; Trembacki, Bradley T.; Veilleux, Michael V.; Ford, Kurtis R.

Simulation of additive manufacturing processes can provide essential insight into material behavior, residual stress, and ultimately, the performance of additively manufactured parts. In this work, we describe a new simulation based workflow utilizing both solid mechanics and fluid mechanics based formulations within the finite element software package SIERRA (Sierra Solid Mechanics Team in Sierra/SolidMechanics 4.52 User’s Guide SAND2019-2715. Technical report, Sandia National Laboratories, 2011) to enable integrated simulations of directed energy deposition (DED) additive manufacturing processes. In this methodology, a high-fidelity fluid mechanics based model of additive manufacturing is employed as the first step in a simulation workflow. This fluid model uses a level set field to track the location of the boundary between the solid material and background gas and precisely predicts temperatures and material deposition shapes from additive manufacturing process parameters. The resulting deposition shape and temperature field from the fluid model are then mapped into a solid mechanics formulation to provide a more accurate surface topology for radiation and convection boundary conditions and a prescribed temperature field. Solid mechanics simulations are then conducted to predict the evolution of material stresses and microstructure within a part. By combining thermal history and deposition shape from fluid mechanics with residual stress and material property evolutions from solid mechanics, additional fidelity and precision are incorporated into additive manufacturing process simulations providing new insight into complex DED builds.

More Details

Mesoscale Effects of Composition and Calendering in Lithium-Ion Battery Composite Electrodes

Journal of Electrochemical Energy Conversion and Storage

Trembacki, Bradley T.; Noble, David R.; Ferraro, Mark E.; Roberts, Scott A.

Macrohomogeneous battery models are widely used to predict battery performance, necessarily relying on effective electrode properties, such as specific surface area, tortuosity, and electrical conductivity. While these properties are typically estimated using ideal effective medium theories, in practice they exhibit highly non-ideal behaviors arising from their complex mesostructures. In this paper, we computationally reconstruct electrodes from X-ray computed tomography of 16 nickel-manganese-cobalt-oxide electrodes, manufactured using various material recipes and calendering pressures. Due to imaging limitations, a synthetic conductive binder domain (CBD) consisting of binder and conductive carbon is added to the reconstructions using a binder bridge algorithm. Reconstructed particle surface areas are significantly smaller than standard approximations predicted, as the majority of the particle surface area is covered by CBD, affecting electrochemical reaction availability. Finite element effective property simulations are performed on 320 large electrode subdomains to analyze trends and heterogeneity across the electrodes. Significant anisotropy of up to 27% in tortuosity and 47% in effective conductivity is observed. Electrical conductivity increases up to 7.5× with particle lithiation. We compare the results to traditional Bruggeman approximations and offer improved alternatives for use in cellscale modeling, with Bruggeman exponents ranging from 1.62 to 1.72 rather than the theoretical value of 1.5. We also conclude that the CBD phase alone, rather than the entire solid phase, should be used to estimate effective electronic conductivity. This study provides insight into mesoscale transport phenomena and results in improved effective property approximations founded on realistic, image-based morphologies.

More Details

Volume-averaged electrochemical performance modeling of 3D interpenetrating battery electrode architectures

Journal of the Electrochemical Society

Trembacki, Bradley T.; Vadakkepatt, Ajay; Roberts, Scott A.; Murthy, Jayathi Y.

Recent advancements in micro-scale additive manufacturing techniques have created opportunities for design of novel electrode geometries that improve battery performance by deviating from the traditional layered battery design. These 3D batteries typically exhibit interpenetrating anode and cathode materials throughout the design space, but the existing well-established porous electrode theory models assume only one type of electrode is present in each battery layer. We therefore develop and demonstrate a multielectrode volume-averaged electrochemical transport model to simulate transient discharge performance of these new interpenetrating electrode architectures. We implement the new reduced-order model in the PETSc framework and asses its accuracy by comparing predictions to corresponding mesoscale-resolved simulations that are orders of magnitude more computationally-intensive. For simple electrode designs such as alternating plates or cylinders, the volume-averaged model predicts performance within ∼2% for electrode feature sizes comparable to traditional particle sizes (5-10μm) at discharge rates up to 3C. When considering more complex geometries such as minimal surface designs (i.e. gyroid, Schwarz P), we show that using calibrated characteristic diffusion lengths for each design results in errors below 3% for discharge rates up to 3C. These comparisons verify that this novel model has made reliable cell-scale simulations of interpenetrating electrode designs possible.

More Details

Electrode Mesoscale as a Collection of Particles: Coupled Electrochemical and Mechanical Analysis of NMC Cathodes

Journal of the Electrochemical Society

Ferraro, Mark E.; Trembacki, Bradley T.; Brunini, Victor B.; Noble, David R.; Roberts, Scott A.

Battery electrodes are composed of polydisperse particles and a porous, composite binder domain. These materials are arranged into a complex mesostructure whose morphology impacts both electrochemical performance and mechanical response. We present image-based, particle-resolved, mesoscale finite element model simulations of coupled electrochemical-mechanical performance on a representative NMC electrode domain. Beyond predicting macroscale quantities such as half-cell voltage and evolving electrical conductivity, studying behaviors on a per-particle and per-surface basis enables performance and material design insights previously unachievable. Voltage losses are primarily attributable to a complex interplay between interfacial charge transfer kinetics, lithium diffusion, and, locally, electrical conductivity. Mesoscale heterogeneities arise from particle polydispersity and lead to material underutilization at high current densities. Particle-particle contacts, however, reduce heterogeneities by enabling lithium diffusion between connected particle groups. While the porous composite binder domain (CBD) may have slower ionic transport and less available area for electrochemical reactions, its high electrical conductivity makes it the preferred reaction site late in electrode discharge. Mesoscale results are favorably compared to both experimental data and macrohomogeneous models. This work enables improvements in materials design by providing a tool for optimization of particle sizes, CBD morphology, and manufacturing conditions.

More Details

Mesoscale electrochemical performance simulation of 3D interpenetrating lithium-ion battery electrodes

Journal of the Electrochemical Society

Trembacki, Bradley T.; Duoss, Eric; Oxberry, Geoffrey; Stadermann, Michael; Murthy, Jayathi

Advancements in micro-scale additive manufacturing techniques have made it possible to fabricate intricate architectures including 3D interpenetrating electrode microstructures. A mesoscale electrochemical lithium-ion battery model is presented and implemented in the PETSc software framework using a finite volume scheme. The model is used to investigate interpenetrating 3D electrode architectures that offer potential energy density and power density improvements over traditional particle bed battery geometries. Using the computational model, a variety of battery electrode geometries are simulated and compared across various battery discharge rates and length scales to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density vs. power density relationship of the electrode microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle-bed electrode designs are predicted, and electrode microarchitectures derived from minimal surfaces are shown to be superior under a minimum feature size constraint, especially when subjected to high discharge currents. An average Thiele modulus formulation is presented as a back-of-the-envelope calculation to predict the performance trends of microbattery electrode geometries.

More Details

Editors' Choice—Mesoscale Analysis of Conductive Binder Domain Morphology in Lithium-Ion Battery Electrodes

Journal of the Electrochemical Society

Trembacki, Bradley T.; Mistry, Aashutosh N.; Noble, David R.; Ferraro, Mark E.; Mukherjee, Partha P.; Roberts, Scott A.

Typical lithium-ion battery electrodes are porous composites comprised of active material, conductive additives, and polymeric binder, with liquid electrolyte filling the pores. The mesoscale morphology of these constituent phases has a significant impact on both electrochemical reactions and transport across the electrode, which can ultimately limit macroscale battery performance. We reconstruct published X-ray computed tomography (XCT) data from a NMC333 cathode to study mesoscale electrode behavior on an as-manufactured electrode geometry. We present and compare two distinct models that computationally generate a composite binder domain (CBD) phase that represents both the polymeric binder and conductive additives. We compare the effect of the resulting CBD morphologies on electrochemically active area, pore phase tortuosity, and effective electrical conductivity. Both dense and nanoporous CBD are considered, and we observe that acknowledging CBD nanoporosity significantly increases effective electrical conductivity by up to an order of magnitude. Properties are compared to published measurements as well as to approximate values often used in homogenized battery-scale models. All reconstructions exhibit less than 20% of the standard electrochemically active area approximation. Order of magnitude discrepancies are observed between two popular transport simulation numerical schemes (finite element method and finite volume method), highlighting the importance of careful numerical verification.

More Details

Born Qualified Grand Challenge LDRD Final Report

Roach, R.A.; Argibay, Nicolas A.; Allen, Kyle M.; Balch, Dorian K.; Beghini, Lauren L.; Bishop, Joseph E.; Boyce, Brad B.; Brown, Judith A.; Burchard, Ross L.; Chandross, M.; Cook, Adam W.; DiAntonio, Christopher D.; Dressler, Amber D.; Forrest, Eric C.; Ford, Kurtis R.; Ivanoff, Thomas I.; Jared, Bradley H.; Johnson, Kyle J.; Kammler, Daniel K.; Koepke, Joshua R.; Kustas, Andrew K.; Lavin, Judith M.; Leathe, Nicholas L.; Lester, Brian T.; Madison, Jonathan D.; Mani, Seethambal S.; Martinez, Mario J.; Moser, Daniel M.; Rodgers, Theron R.; Seidl, Daniel T.; Brown-Shaklee, Harlan J.; Stanford, Joshua S.; Stender, Michael S.; Sugar, Joshua D.; Swiler, Laura P.; Taylor, Samantha T.; Trembacki, Bradley T.

This SAND report fulfills the final report requirement for the Born Qualified Grand Challenge LDRD. Born Qualified was funded from FY16-FY18 with a total budget of ~$13M over the 3 years of funding. Overall 70+ staff, Post Docs, and students supported this project over its lifetime. The driver for Born Qualified was using Additive Manufacturing (AM) to change the qualification paradigm for low volume, high value, high consequence, complex parts that are common in high-risk industries such as ND, defense, energy, aerospace, and medical. AM offers the opportunity to transform design, manufacturing, and qualification with its unique capabilities. AM is a disruptive technology, allowing the capability to simultaneously create part and material while tightly controlling and monitoring the manufacturing process at the voxel level, with the inherent flexibility and agility in printing layer-by-layer. AM enables the possibility of measuring critical material and part parameters during manufacturing, thus changing the way we collect data, assess performance, and accept or qualify parts. It provides an opportunity to shift from the current iterative design-build-test qualification paradigm using traditional manufacturing processes to design-by-predictivity where requirements are addressed concurrently and rapidly. The new qualification paradigm driven by AM provides the opportunity to predict performance probabilistically, to optimally control the manufacturing process, and to implement accelerated cycles of learning. Exploiting these capabilities to realize a new uncertainty quantification-driven qualification that is rapid, flexible, and practical is the focus of this effort.

More Details
Results 1–25 of 47
Results 1–25 of 47