Publications

Results 1–25 of 125

Search results

Jump to search filters

Wire arc additive manufactured A36 steel performance for marine renewable energy systems

International Journal of Advanced Manufacturing Technology

Adamczyk, Jesse A.; Choi, Hyein; Hernandez-Sanchez, Bernadette A.; Koss, Eun-Kyung; Noell, Philip N.; Spiak, Stephen R.; Puckett, Raymond V.; Escarcega Herrera, Kasandra; Love, Ana S.; Karasz, Erin K.; Neary, Vincent S.; Melia, Michael A.; Heiden, Michael J.

Additive manufacturing has established itself to be advantageous beyond small-scale prototyping, now supporting full-scale production of components for a variety of applications. Despite its integration across industries, marine renewable energy technology is one largely untapped application with potential to bolster clean energy production on the global scale. Wave energy converters (WEC) are one specific facet within this realm that could benefit from AM. As such, wire arc additive manufacturing (WAAM) has been identified as a practical method to produce larger scale marine energy components by leveraging cost-effective and readily available A36 steel feedstock material. The flexibility associated with WAAM can benefit production of WEC by producing more complex structural geometries that are challenging to produce traditionally. Additionally, for large components where fine details are less critical, the high deposition rate of WAAM in comparison to traditional wrought techniques could reduce build times by an order of magnitude. In this context of building and supporting WEC, which experience harsh marine environments, an understanding of performance under large loads and corrosive environments must be understood. Hence, WAAM and wrought A36 steel tensile samples were manufactured, and mechanical properties compared under both dry and corroded conditions. The unique microstructure created via the WAAM process was found to directly correlate to the increased ultimate tensile and yield strength compared to the wrought condition. Static corrosion testing in a simulated saltwater environment in parallel with electrochemical testing highlighted an outperformance of corroded WAAM A36 steel than wrought, despite having a slighter higher corrosion rate. Ultimately, this study shows how marine energy systems may benefit from additive manufacturing components and provides a foundation for future applications of WAAM A36 steel.

More Details

A Multicontinuum-Theory-Based Approach to the Analysis of Fiber-Reinforced Polymer Composites with Degraded Stiffness and Strength Properties Due to Moisture Absorption

Journal of Marine Science and Engineering

Anderson, Evan M.; Gunawan, Budi G.; Nicholas, James N.; Ingraham, Mathew D.; Hernandez-Sanchez, Bernadette A.

Marine energy generation technologies such as wave and tidal power have great potential in meeting the need for renewable energy in the years ahead. Yet, many challenges remain associated with marine-based systems because of the corrosive environment. Conventional materials like metals are subject to rapid corrosive breakdown, crippling the lifespan of structures in such environments. Fiber-reinforced polymer composites offer an appealing alternative in their strength and corrosion resistance, but can experience degradation of mechanical properties as a result of moisture absorption. An investigation is conducted to test the application of a technique for micromechanical analysis of composites, known as multicontinuum theory and demonstrated in past works, as a mechanism for predicting the effects of prolonged moisture absorption on the performance of fiber-reinforced composites. Experimental tensile tests are performed on composite coupons with and without prolonged exposure to a salt water solution to obtain stiffness and strength properties. Multicontinuum theory is applied in conjunction with micromechanical modeling to deduce the effects of moisture absorption on the behavior of constituent materials within the composites. The results are consistent with experimental observations when guided by known mechanisms and trends from previous studies, indicating multicontinuum theory as a potentially effective tool in predicting the long-term performance of composites in marine environments.

More Details

Overview of Ablation Research at Sandia National Laboratories

Roberts, Scott A.; Anderson, Nicholas; Arienti, Marco A.; Armijo, Kenneth M.; Blonigan, Patrick J.; Casper, Katya M.; Collins, Lincoln; Creveling, Peter; Delgado, Paul M.; Di Stefano, Martin; Engerer, Jeffrey D.; Fisher, Travis C.; Foster, Collin W.; Gosma, Mitchell; Hansen, Michael A.; Hernandez-Sanchez, Bernadette A.; Hess, Ryan F.; Kieweg, Sarah K.; Lynch, Kyle P.; Mussoni, Erin E.; Potter, Kevin M.; Tencer, John T.; van de Werken, Nekoda v.; Wilson, Zachary; Wagner, Justin W.; Wagnild, Ross M.

Abstract not provided.

Polymer intercalation synthesis of glycoboehmite nanosheets

Applied Clay Science

Bell, Nelson S.; Rodriguez, Mark A.; Kotula, Paul G.; Kruichak, Jessica N.; Hernandez-Sanchez, Bernadette A.; Casillas, Maddison R.; Kolesnichenko, Igor K.; Matteo, Edward N.

Novel materials based on the aluminum oxyhydroxide boehmite phase were prepared using a glycothermal reaction in 1,4-butanediol. Under the synthesis conditions, the atomic structure of the boehmite phase is altered by the glycol solvent in place of the interlayer hydroxyl groups, creating glycoboehmite. The structure of glycoboehmite was examined in detail to determine that glycol molecules are intercalated in a bilayer structure, which would suggest that there is twice the expansion identified previously in the literature. This precursor phase enables synthesis of two new phases that incorporate either polyvinylpyrrolidone or hydroxylpropyl cellulose nonionic polymers. These new materials exhibit changes in morphology, thermal properties, and surface chemistry. All the intercalated phases were investigated using PXRD, HRSTEM, SEM, FT-IR, TGA/DSC, zeta potential titrations, and specific surface area measurement. These intercalation polymers are non-ionic and interact through wetting interactions and hydrogen bonding, rather than by chemisorption or chelation with the aluminum ions in the structure.

More Details

Credible, Automated Meshing of Images (CAMI)

Roberts, Scott A.; Donohoe, Brendan D.; Martinez, Carianne M.; Krygier, Michael K.; Hernandez-Sanchez, Bernadette A.; Foster, Collin W.; Collins, Lincoln; Greene, Benjamin G.; Noble, David R.; Norris, Chance A.; Potter, Kevin M.; Roberts, Christine C.; Neal, Kyle D.; Bernard, Sylvain R.; Schroeder, Benjamin B.; Trembacki, Bradley; Labonte, Tyler; Sharma, Krish; Ganter, Tyler G.; Jones, Jessica E.; Smith, Matthew D.

Abstract not provided.

Stability Evaluation of Candidate Precursors for Chemical Vapor Deposition of Hafnium Diboride (HfB2)

ACS Omega

Rimsza, Jessica R.; Chackerian, Samuel C.B.; Boyle, Timothy J.; Hernandez-Sanchez, Bernadette A.

Alternative candidate precursors to [Hf(BH4)4] for low-temperature chemical vapor deposition of hafnium diboride (HfB2) films were identified using density functional theory simulations of molecules with the composition [Hf(BH4)2L2], where L = -OH, -OMe, -O-t-Bu, -NH2, -N═C═O, -N(Me)2, and -N(CH2)5NH2 (1-piperidin-2-amine referred to as Pip2A). Disassociation energies (ED), potential energy surface (PES) scans, ionization potentials, and electron affinities were all calculated to identify the strength of the Hf-L bond and the potential reactivity of the candidate precursor. Ultimately, the low ED (2.07 eV) of the BH4 ligand removal from the Hf atom in [Hf(BH4)4] was partially attributed to an intermediate state where [Hf(BH4)3(H)] and BH3 is formed. Of the candidate precursors investigated, three exhibited a similar mechanism, but only -Pip2A had a PES scan that indicated binding competitive with [Hf(BH4)4], making it a viable candidate for further study.

More Details

Summary of Marine and Hydrokinetic (MHK) Composites Testing at Montana State University

Miller, David A.; Samborsky, Daniel D.; Stoffels, Mark T.; Voth, Michael M.; Nunemaker, Jake D.; Newhouse, Kai J.; Hernandez-Sanchez, Bernadette A.

Marine and hydrokinetic (MHK) energy technologies convert the energy of waves, tides, and river and ocean currents into electricity. The primary structure of MHK energy devices have difficult and challenging environments for which fiber reinforced plastics are often considered. For cost benefits, glass fiber reinforced plastics (GFRP) are the most prevalent system under consideration. Montana State University and Sandia National Laboratories have performed research into the moisture effects on the stiffness, strength, and damage of GFRPs for many years. This paper presents a summary of a portion of this effort and also provides references to the thesis and conferences that contain the detailed information. The results include models of moisture absorption, effects of stress on moisture uptake, effects of moisture on damage modes and development, laminate stacking order effects, and culminates with moisture uptake effects on a large sample of industry collected coupons.

More Details

Online Waste Library (OWL) and Waste Forms Characteristics Annual Report

Sassani, David C.; Brady, Patrick V.; Criscenti, Louise C.; Fluke, Nichole L.; Gelbard, Fred G.; Laros, James H.; Price, Laura L.; Prouty, Jeralyn L.; Rechard, Robert P.; Rigali, Mark J.; Rogers, Ralph D.; Hernandez-Sanchez, Bernadette A.; Laros, James H.; Tillman, Jackie B.; Walkow, Walter M.; Weck, Philippe F.

This report represents completion of milestone deliverable M2SF-19SNO10309013 "Online Waste Library (OWL) and Waste Forms Characteristics Annual Report" that reports annual status on fiscal year (FY) 2019 activities for the work package SF-19SN01030901 and is due on August 2, 2019. The online waste library (OWL) has been designed to contain information regarding United States (U.S.) Department of Energy (DOE)-managed (as) high-level waste (DHLW), spent nuclear fuel (SNF), and other wastes that are likely candidates for deep geologic disposal, with links to the current supporting documents for the data (when possible; note that no classified or official-use-only (OUO) data are planned to be included in OWL). There may be up to several hundred different DOE-managed wastes that are likely to require deep geologic disposal. This annual report on FY2019 activities includes evaluations of waste form characteristics and waste form performance models, updates to the OWL development, and descriptions of the management processes for the OWL. Updates to the OWL include an updated user's guide, additions to the OWL database content for wastes and waste forms, results of the beta testing and changes implemented from it. Also added are descriptions of the management/control processes for the OWL development, version control, and archiving. These processes have been implemented as part of the full production release of OWL (i.e., OWL Version 1.0), which has been developed on, and will be hosted and managed on, Sandia National Laboratories (SNL) systems. The version control/update processes will be implemented for updates to the OWL in the future. Additionally, another process covering methods for interfacing with the DOE SNF Database (DOE 2007) at Idaho National Laboratory on the numerous entries for DOE-managed SNF (DSNF) has been pushed forward by defining data exchanges and is planned to be implemented sometime in FY2020. The INL database is also sometimes referred to as the Spent Fuel Database or the SFDB, which is the acronym that will be used in this report. Once fully implemented, this integration effort will serve as a template for interfacing with additional databases throughout the DOE complex.

More Details
Results 1–25 of 125
Results 1–25 of 125