Publications

Results 1–25 of 61

Search results

Jump to search filters

Buried-Electrode Hybrid Bonded Thin-Film Lithium Niobate Electro-Optic Mach-Zehnder Modulators

IEEE Photonics Technology Letters

Kodigala, Ashok; Valdez, Forrest; Mere, Viphretuo; Mookherjea, Shayan; Boynton, Nicholas; Friedmann, Thomas A.; Arterburn, Shawn C.; Dallo, Christina M.; Pomerene, Andrew P.; Starbuck, Andrew L.; Lentine, Anthony L.; Trotter, Douglas C.

Hybrid bonded silicon nitride thin-film lithium niobate (TFLN) Mach-Zehnder modulators (MZMs) at 1310 nm were designed with metal coplanar waveguide electrodes buried in the silicon-on-insulator (SOI) chip. The MZM devices showed greatly improved performance compared to earlier devices of a similar design, and similar performance to comparable MZM devices with gold electrodes made on top of the TFLN layer. Both devices achieve a 3-dB electro-optic bandwidth greater than 110 GHz and voltage-driven optical extinction ratios greater than 28 dB. Half-wave voltage-length products ( Vπ L) of 2.8 and 2.5 Vċ cm were measured for the 0.5 and 0.4 cm long buried metal and top gold electrode MZMs, respectively.

More Details

Piezo-optomechanical Control of Silicon Photonic Resonator with CMOS Compatibility

CLEO: Science and Innovations, CLEO:S and I 2023

Talcott, Gina; Leenheer, Andrew J.; Starbuck, Andrew L.; Musick, Katherine M.; Pomerene, Andrew P.; Dallo, Christina M.; Trotter, Douglas C.; Madaras, Scott; Gehl, M.; Lentine, Anthony L.; Eichenfield, Matt; Otterstrom, Nils T.

We demonstrate piezo-optomechanical phase control in a c-band silicon-photonic resonator using CMOS-compatible AlN microactuators. We achieve a frequency tuning response of 26.91 ± 0.77 MHz/V DC, operating at picowatt to nanowatt power levels.

More Details

Thin-Film Lithium Niobate Electro-Optic Modulators with Integrated Silicon Photonic Thermo-Optic Phase Shifters

CLEO: Science and Innovations, CLEO:S and I 2023

Boynton, Nicholas; Friedmann, Thomas A.; Arterburn, Shawn C.; Musick, Katherine M.; Boady, Matthew S.; Starbuck, Andrew L.; Trotter, Douglas C.; Pomerene, Andrew P.; Kodigala, Ashok; Lentine, Anthony L.; Morton, Paul A.; Gehl, M.

TFLN/silicon photonic modulators featuring active silicon photonic components are reported with a Vπ of 3.6 Vcm. This hybrid architecture utilizes the bottom of the buried oxide as the bonding surface which features minimum topology.

More Details

Narrowband microwave-photonic notch filters using Brillouin-based signal transduction in silicon

Nature Communications

Gertler, Shai; Otterstrom, Nils T.; Gehl, M.; Starbuck, Andrew L.; Dallo, Christina M.; Pomerene, Andrew P.; Trotter, Douglas C.; Lentine, Anthony L.; Rakich, Peter T.

The growing demand for bandwidth makes photonic systems a leading candidate for future telecommunication and radar technologies. Integrated photonic systems offer ultra-wideband performance within a small footprint, which can naturally interface with fiber-optic networks for signal transmission. However, it remains challenging to realize narrowband (∼MHz) filters needed for high-performance communications systems using integrated photonics. In this paper, we demonstrate all-silicon microwave-photonic notch filters with 50× higher spectral resolution than previously realized in silicon photonics. This enhanced performance is achieved by utilizing optomechanical interactions to access long-lived phonons, greatly extending available coherence times in silicon. We use a multi-port Brillouin-based optomechanical system to demonstrate ultra-narrowband (2.7 MHz) notch filters with high rejection (57 dB) and frequency tunability over a wide spectral band (6 GHz) within a microwave-photonic link. We accomplish this with an all-silicon waveguide system, using CMOS-compatible fabrication techniques.

More Details

Edge-Illuminated Monochromatic Photovoltaic Array for Galvanically-Isolated Power-Over-Fiber

2022 IEEE Research and Applications of Photonics in Defense Conference, RAPID 2022 - Proceedings

Fortuna, S.A.; Skogen, Erik J.; Choi, Junoh C.; Kaehr, Bryan J.; Pomerene, Andrew P.; Alford, Charles A.; Mondragon, Joshua

We used a micro-fabricated fused silica light guide plate to uniformly illuminate a GaAs photovoltaic array with a fiber-coupled 808 nm laser. Greater than 1 Watt of galvanically-isolated electrical power was generated from this compact edge-illuminated monochromatic photovoltaic module.

More Details

Nonreciprocal Frequency Domain Beam Splitter

Physical Review Letters

Otterstrom, Nils T.; Gertler, Shai; Kittlaus, Eric A.; Gehl, M.; Starbuck, Andrew L.; Dallo, Christina M.; Pomerene, Andrew P.; Trotter, Douglas C.; Rakich, Peter T.; Davids, Paul D.; Lentine, Anthony L.

The canonical beam splitter - a fundamental building block of quantum optical systems - is a reciprocal element. It operates on forward- and backward-propagating modes in the same way, regardless of direction. The concept of nonreciprocal quantum photonic operations, by contrast, could be used to transform quantum states in a momentum- and direction-selective fashion. Here we demonstrate the basis for such a nonreciprocal transformation in the frequency domain through intermodal Bragg scattering four-wave mixing (BSFWM). Since the total number of idler and signal photons is conserved, the process can preserve coherence of quantum optical states, functioning as a nonreciprocal frequency beam splitter. We explore the origin of this nonreciprocity and find that the phase-matching requirements of intermodal BSFWM produce an enormous asymmetry (76×) in the conversion bandwidths for forward and backward configurations, yielding ∼25 dB of nonreciprocal contrast over several hundred GHz. We also outline how the demonstrated efficiencies (∼10-4) may be scaled to near-unity values with readily accessible powers and pumping configurations for applications in integrated quantum photonics.

More Details

Narrowband microwave-photonic notch filtering using Brillouin interactions in silicon

Optics InfoBase Conference Papers

Gertler, Shai; Otterstrom, Nils T.; Gehl, M.; Starbuck, Andrew L.; Dallo, Christina M.; Pomerene, Andrew P.; Lentine, Anthony L.; Rakich, Peter T.

We present narrowband RF-photonic filters in an integrated silicon platform. Using Brillouin interactions, the filters yield narrowband (∼MHZ) filter bandwidths with high signal rejection, and demonstrate tunability over a wide (∼GHz) frequency range.

More Details

Direct-write orientation of charge-transfer liquid crystals enables polarization-based coding and encryption

Scientific Reports

Kaehr, Bryan J.; Van Winkle, Madeline; Wallace, Harper O.W.; Smith, Niquana; Pomerene, Andrew P.; Wood, Michael G.; Reczek, Joseph J.

Optical polarizers encompass a class of anisotropic materials that pass-through discrete orientations of light and are found in wide-ranging technologies, from windows and glasses to cameras, digital displays and photonic devices. The wire-grids, ordered surfaces, and aligned nanomaterials used to make polarized films cannot be easily reconfigured once aligned, limiting their use to stationary cross-polarizers in, for example, liquid crystal displays. Here we describe a supramolecular material set and patterning approach where the polarization angle in stand-alone films can be precisely defined at the single pixel level and reconfigured following initial alignment. This capability enables new routes for non-binary information storage, retrieval, and intrinsic encryption, and it suggests future technologies such as photonic chips that can be reconfigured using non-contact patterning.

More Details

Gamma radiation effects on passive silicon photonic waveguides using phase sensitive methods

Optics Express

Boynton, Nicholas; Gehl, M.; Dallo, Christina M.; Pomerene, Andrew P.; Starbuck, Andrew L.; Hood, Dana; Dodd, Paul E.; Swanson, Scot; Trotter, Douglas; DeRose, Christopher T.; Lentine, Anthony L.

Passive silicon photonic waveguides are exposed to gamma radiation to understand how the performance of silicon photonic integrated circuits is affected in harsh environments such as space or high energy physics experiments. The propagation loss and group index of the mode guided by these waveguides is characterized by implementing a phase sensitive swept-wavelength interferometric method. We find that the propagation loss associated with each waveguide geometry explored in this study slightly increases at absorbed doses of up to 100 krad (Si). The measured change in group index associated with the same waveguide geometries is negligibly changed after exposure. Additionally, we show that the post-exposure degradation of these waveguides can be improved through heat treatment.

More Details

Backscatter-Immune Injection-Locked Brillouin Laser in Silicon

Physical Review Applied

Otterstrom, Nils T.; Gertler, Shai; Zhou, Yishu; Kittlaus, Eric A.; Behunin, Ryan O.; Gehl, M.; Starbuck, Andrew L.; Dallo, Christina M.; Pomerene, Andrew P.; Trotter, Douglas C.; Lentine, Anthony L.; Rakich, Peter T.

As self-sustained oscillators, lasers possess the unusual ability to spontaneously synchronize. These nonlinear dynamics are the basis for a simple yet powerful stabilization technique known as injection locking, in which a laser's frequency and phase can be controlled by an injected signal. Because of its inherent simplicity and favorable noise characteristics, injection locking has become a workhorse for coherent amplification and high-fidelity signal synthesis in applications ranging from precision atomic spectroscopy to distributed sensing. Within integrated photonics, however, these injection-locking dynamics remain relatively untapped - despite significant potential for technological and scientific impact. Here, we demonstrate injection locking in a silicon photonic Brillouin laser. Injection locking of this monolithic device is remarkably robust, allowing us to tune the laser emission by a significant fraction of the Brillouin gain bandwidth. Harnessing these dynamics, we demonstrate amplification of small signals by more than 23 dB. Moreover, we demonstrate that the injection-locking dynamics of this system are inherently nonreciprocal, yielding unidirectional control and backscatter immunity in an all-silicon system. This device physics opens the door to strategies for phase-noise reduction, low-noise amplification, and backscatter immunity in silicon photonics.

More Details

Heterogeneous Integration of Silicon Electronics and Compound Semiconductor Optoelectronics for Miniature RF Photonic Transceivers

Nordquist, Christopher N.; Skogen, Erik J.; Fortuna, S.A.; Hollowell, Andrew E.; Hemmady, Caroline S.; Laros, James H.; Forbes, T.; Wood, Michael G.; Jordan, Matthew J.; Dallo, Henry J.; McClain, Jaime L.; Lepkowski, Stefan M.; Alford, Charles A.; Peake, Gregory M.; Pomerene, Andrew P.; Long, Christopher J.; Serkland, Darwin K.; Dean, Kenneth A.

Abstract not provided.

Unidirectional Injection-Locked Brillouin Laser in Silicon

Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS

Otterstrom, Nils T.; Gertler, Shai; Zhou, Yishu; Kittlaus, Eric A.; Behunin, Ryan O.; Gehl, M.; Starbuck, Andrew L.; Dallo, Christina M.; Pomerene, Andrew P.; Trotter, Douglas C.; Lentine, Anthony L.; Rakich, Peter T.

We demonstrate injection-locked operation of a silicon-based Brillouin laser for the first time. The unique spatio-temporal inter-modal Brillouin dynamics enable nonreciprocal control and low-phase-noise operation within a monolithically integrated system.

More Details

A heterogeneously integrated silicon photonic/lithium niobate travelling wave electro-optic modulator

Optics Express

Boynton, Nicholas; Cai, Hong; Gehl, M.; Arterburn, Shawn C.; Dallo, Christina M.; Pomerene, Andrew P.; Starbuck, Andrew L.; Hood, Dana; Trotter, Douglas C.; Friedmann, Thomas A.; Derose, Christopher T.; Lentine, Anthony L.

Silicon photonics is a platform that enables densely integrated photonic components and systems and integration with electronic circuits. Depletion mode modulators designed on this platform suffer from a fundamental frequency response limit due to the mobility of carriers in silicon. Lithium niobate-based modulators have demonstrated high performance, but the material is difficult to process and cannot be easily integrated with other photonic components and electronics. In this manuscript, we simultaneously take advantage of the benefits of silicon photonics and the Pockels effect in lithium niobate by heterogeneously integrating silicon photonic-integrated circuits with thin-film lithium niobate samples. We demonstrate the most CMOS-compatible thin-film lithium niobate modulator to date, which has electro-optic 3 dB bandwidths of 30.6 GHz and half-wave voltages of 6.7 V×cm. These modulators are fabricated entirely in CMOS facilities, with the exception of the bonding of a thin-film lithium niobate sample post fabrication, and require no etching of lithium niobate.

More Details

Heterogeneous integration of silicon electronics and compound semiconductor optoelectronics for miniature rf photonic transceivers

ECS Transactions

Nordquist, Christopher N.; Skogen, Erik J.; Fortuna, S.A.; Hollowell, Andrew E.; Hemmady, Caroline S.; Laros, James H.; Forbes, T.; Wood, Michael G.; Jordan, Matthew J.; McClain, Jaime L.; Lepkowski, Stefan M.; Alford, Charles A.; Peake, Gregory M.; Pomerene, Andrew P.; Long, Christopher M.; Serkland, Darwin K.; Dean, Kenneth A.

Heterogeneous Integration (HI) may enable optoelectronic transceivers for short-range and long-range radio frequency (RF) photonic interconnect using wavelength-division multiplexing (WDM) to aggregate signals, provide galvanic isolation, and reduce crosstalk and interference. Integration of silicon Complementary Metal-Oxide-Semiconductor (CMOS) electronics with InGaAsP compound semiconductor photonics provides the potential for high-performance microsystems that combine complex electronic functions with optoelectronic capabilities from rich bandgap engineering opportunities, and intimate integration allows short interconnects for lower power and latency. The dominant pure-play foundry model plus the differences in materials and processes between these technologies dictate separate fabrication of the devices followed by integration of individual die, presenting unique challenges in die preparation, metallization, and bumping, especially as interconnect densities increase. In this paper, we describe progress towards realizing an S-band WDM RF photonic link combining 180 nm silicon CMOS electronics with InGaAsP integrated optoelectronics, using HI processes and approaches that scale into microwave and millimeter-wave frequencies.

More Details

A heterogeneously integrated silicon photonic/lithium niobate platform for RF photonics

AVFOP 2019 - Avionics and Vehicle Fiber-Optics and Photonics Conference

Boynton, Nicholas; Cai, Hong; Gehl, M.; Arterburn, Shawn C.; Dallo, Christina M.; Pomerene, Andrew P.; Starbuck, Andrew L.; Hood, Dana; Trotter, Douglas C.; Friedmann, Thomas A.; Derose, Christopher T.; Lentine, Anthony L.

We present a 30 GHz heterogeneously integrated silicon photonic/lithium niobate Mach-Zehnder modulator simultaneously utilizing the strong Pockels effect in LiNbO3 while also taking advantage of the ability for photonic/electronic integration and mass production associated with silicon photonics. Aside from the final step of bonding the LiNbO3, this modulator can be entirely fabricated using CMOS facilities.

More Details

A Stable Ultrahigh Extinction Silicon Photonic Amplitude Modulator

2018 7th Annual IEEE Photonics Society Optical Interconnects Conference, OI 2018

Cai, Hong; Liu, Sheng; Pomerene, Andrew P.; Trotter, Douglas C.; Starbuck, Andrew L.; Dallo, Christina M.; Hood, Dana H.; DeRose, Christopher T.; Lentine, Anthony L.

We demonstrate the ultrahigh extinction operation of a silicon photonic (SiP) amplitude modulator (AM) employing a cascaded Mach-Zehnder interferometer. By carrying out optimization sweeps without significantly degrading the extinction, the SiP AM is robust to environment changes and maintained >52 dB extinction for >6 hrs.

More Details
Results 1–25 of 61
Results 1–25 of 61