Publications

Results 2001–2025 of 96,771

Search results

Jump to search filters

Enabling Floating Offshore VAWT Design by Coupling OWENS and OpenFAST

Energies

Moore, Kevin R.; Ennis, Brandon L.; Jonkman, Jason; Mendoza, Nicole R.; Platt, Andrew; Devin, Michael C.

Vertical-axis wind turbines (VAWTs) have a long history, with a wide variety of turbine archetypes that have been designed and tested since the 1970s. While few utility-scale VAWTs currently exist, the placement of the generator near the turbine base could make VAWTs advantageous over tradition horizontal-axis wind turbines for floating offshore wind applications via reduced platform costs and improved scaling potential. However, there are currently few numerical design and analysis tools available for VAWTs. One existing engineering toolset for aero-hydro-servo-elastic simulation of VAWTs is the Offshore Wind ENergy Simulator (OWENS), but its current modeling capability for floating systems is non-standard and not ideal. This article describes how OWENS has been coupled to several OpenFAST modules to update and improve modeling of floating offshore VAWTs and discusses the verification of these new capabilities and features. The results of the coupled OWENS verification test agree well with a parallel OpenFAST simulation, validating the new modeling and simulation capabilities in OWENS for floating VAWT applications. These developments will enable the design and optimization of floating offshore VAWTs in the future.

More Details

Comparison of Designs of Hydrogen Isotope Separation Columns by Numerical Modeling

Industrial and Engineering Chemistry Research

Robinson, David R.; Salloum, Maher S.

Mixtures of gas-phase hydrogen isotopologues (diatomic combinations of protium, deuterium, and tritium) can be separated using columns containing a solid such as palladium that reversibly absorbs hydrogen. A temperature-swing process can transport hydrogen into or out of a column by inducing temperature-dependent absorption or desorption reactions. We consider two designs: a thermal cycling absorption process, which moves hydrogen back and forth between two columns, and a simulated moving bed (SMB), where columns are in a circular arrangement. We present a numerical mass and heat transport model of absorption columns for hydrogen isotope separation. It includes a detailed treatment of the absorption-desorption reaction for palladium. By comparing the isotope concentrations within the columns as a function of position and time, we observe that SMB can lead to sharper separations for a given number of thermal cycles by avoiding the remixing of isotopes.

More Details

Partitioning Communication Streams Into Graph Snapshots

IEEE Transactions on Network Science and Engineering

Wendt, Jeremy D.; Field, Richard V.; Phillips, Cynthia A.; Prasadan, Arvind P.; Wilson, Tegan; Soundarajan, Sucheta; Bhowmick, Sanjukta

We present EASEE (Edge Advertisements into Snapshots using Evolving Expectations) for partitioning streaming communication data into static graph snapshots. Given streaming communication events (A talks to B), EASEE identifies when events suffice for a static graph (a snapshot). EASEE uses combinatorial statistical models to adaptively find when a snapshot is stable, while watching for significant data shifts - indicating a new snapshot should begin. If snapshots are not found carefully, they poorly represent the underlying data - and downstream graph analytics fail: We show a community detection example. We demonstrate EASEE's strengths against several real-world datasets, and its accuracy against known-answer synthetic datasets. Synthetic datasets' results show that (1) EASEE finds known-answer data shifts very quickly; and (2) ignoring these shifts drastically affects analytics on resulting snapshots. We show that previous work misses these shifts. Further, we evaluate EASEE against seven real-world datasets (330 K to 2.5B events), and find snapshot-over-time behaviors missed by previous works. Finally, we show that the resulting snapshots' measured properties (e.g., graph density) are altered by how snapshots are identified from the communication event stream. In particular, EASEE's snapshots do not generally 'densify' over time, contradicting previous influential results that used simpler partitioning methods.

More Details
Results 2001–2025 of 96,771
Results 2001–2025 of 96,771