This document is intended to be utilized with the Equipment Test Environment being developed to provide a standard process by which the ETE can be validated. The ETE is developed with the intent of establishing cyber intrusion, data collection and through automation provide objective goals that provide repeatability. This testing process is being developed to interface with the Technical Area V physical protection system. The document will overview the testing structure, interfaces, device and network logging and data capture. Additionally, it will cover the testing procedure, criteria and constraints necessary to properly capture data and logs and record them for experimental data capture and analysis.
Using a newly developed coupling of the ElectroMagnetic Plasma In Realistic Environments (EMPIRE) code with the Integrated Tiger Series (ITS) code, radiation environment calculations have been performed. The effort was completed as part of the Saturn Recapitalization (Recap) program that represents activities to upgrade and modernize the Saturn accelerator facility. The radiation environment calculations performed provide baseline results with current or planned hardware in the facility. As facility design changes are proposed and implemented as part of Saturn Recap, calculations of the radiation environment will be performed to understand how the changes impact the output of the Saturn accelerator.
In this work we present a novel method for improving the high-temperature performance of silicon photomultipliers (SiPMs) via focused ion beam (FIB) modification of individual microcells. The literature suggests that most of the dark count rate (DCR) in a SiPM is contributed by a small percentage (<5%) of microcells. By using a FIB to electrically deactivate this relatively small number of microcells, we believe we can greatly reduce the overall DCR of the SiPM at the expense of a small reduction in overall photodetection efficiency, thereby improving its high temperature performance. In this report we describe our methods for characterizing the SiPM to determine which individual microcells contribute the most to the DCR, preparing the SiPM for FIB, and modifying the SiPM using the FIB to deactivate the identified microcells.
Optimal mitigation planning for highly disruptive contingencies to a transmission-level power system requires optimization with dynamic power system constraints, due to the key role of dynamics in system stability to major perturbations. We formulate a generalized disjunctive program to determine optimal grid component hardening choices for protecting against major failures, with differential algebraic constraints representing system dynamics (specifically, differential equations representing generator and load behavior and algebraic equations representing instantaneous power balance over the transmission system). We optionally allow stochastic optimal pre-positioning across all considered failure scenarios, and optimal emergency control within each scenario. This novel formulation allows, for the first time, analyzing the resilience interdependencies of mitigation planning, preventive control, and emergency control. Using all three strategies in concert is particularly effective at maintaining robust power system operation under severe contingencies, as we demonstrate on the Western System Coordinating Council (WSCC) 9-bus test system using synthetic multi-device outage scenarios. Towards integrating our modeling framework with real threats and more realistic power systems, we explore applying hybrid dynamics to power systems. Our work is applied to basic RL circuits with the ultimate goal of using the methodology to model protective tripping schemes in the grid. Finally, we survey mitigation techniques for HEMP threats and describe a GIS application developed to create threat scenarios in a grid with geographic detail.