Effects of Element Abundance on Temperature and Charged State Distribution in Laboratory Photoionized Plasmas
Abstract not provided.
Abstract not provided.
Abstract not provided.
The On-Line Waste Library is a website that contains information regarding United States Department of Energy-managed high-level waste, spent nuclear fuel, and other wastes that are likely candidates for deep geologic disposal, with links to supporting documents for the data. This report provides supporting information for the data for which an already published source was not available.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Applied
To detect a specific radio-frequency (rf) magnetic field, rf optically pumped magnetometers (OPMs) require a static magnetic field to set the Larmor frequency of the atoms equal to the frequency of interest. However, unshielded and variable magnetic field environments (e.g., an rf OPM on a moving platform) pose a problem for rf OPM operation. Here, we demonstrate the use of a natural-abundance rubidium vapor to make a comagnetometer to address this challenge. Our implementation builds upon the simultaneous application of several OPM techniques within the same vapor cell. First, we use a modified implementation of an OPM variometer based on 87Rb to detect and actively cancel unwanted external fields at frequencies 60Hz using active feedback to a set of field control coils. We exploit this stabilized field environment to implement a high-sensitivity rf magnetometer using 85Rb. Using this approach, we demonstrate the ability to measure rf fields with a sensitivity of approximately 9fTHz-1/2 inside a magnetic shield in the presence of an applied field of approximately 20μT along three mutually orthogonal directions. This demonstration opens up a path toward completely unshielded operation of a high-sensitivity rf OPM.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.